File size: 5,015 Bytes
710f241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import random\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "\n",
    "def generate_random_dna_sequence(length):\n",
    "    return ''.join(random.choices('ATGC', k=length))\n",
    "\n",
    "np.random.seed(42)\n",
    "\n",
    "# Generate 200 sequences of random DNA sequences with lengths ranging from 200 to 2000\n",
    "sequence_lengths = np.random.randint(200, 2001, size=2000)\n",
    "dna_sequences = [generate_random_dna_sequence(length) for length in sequence_lengths]\n",
    "labels1 = np.random.randint(0, 2, size=2000)\n",
    "labels2 = np.random.randint(0, 3, size=2000)\n",
    "labels3 = np.random.randint(0, 5, size=2000)\n",
    "\n",
    "# Create a DataFrame with the DNA sequences and random labels\n",
    "df_dna = pd.DataFrame({\n",
    "    'sequence': dna_sequences,\n",
    "    'label1': labels1,\n",
    "    'label2': labels2,\n",
    "    'label3': labels3\n",
    "})\n",
    "\n",
    "# Save to CSV\n",
    "csv_dna_path = \"/data/project/hf_tutorial/data/train.csv\"\n",
    "df_dna.to_csv(csv_dna_path, index=False)\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "# Generate 200 sequences of random DNA sequences with lengths ranging from 200 to 2000\n",
    "sequence_lengths = np.random.randint(200, 2001, size=200)\n",
    "dna_sequences = [generate_random_dna_sequence(length) for length in sequence_lengths]\n",
    "labels1 = np.random.randint(0, 2, size=200)\n",
    "labels2 = np.random.randint(0, 3, size=200)\n",
    "labels3 = np.random.randint(0, 5, size=200)\n",
    "\n",
    "# Create a DataFrame with the DNA sequences and random labels\n",
    "df_dna = pd.DataFrame({\n",
    "    'sequence': dna_sequences,\n",
    "    'label1': labels1,\n",
    "    'label2': labels2,\n",
    "    'label3': labels3\n",
    "})\n",
    "\n",
    "# Save to CSV\n",
    "csv_dna_path = \"/data/project/hf_tutorial/data/eval.csv\"\n",
    "df_dna.to_csv(csv_dna_path, index=False)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Function to generate a random string of a given length\n",
    "def generate_random_string(length):\n",
    "    return ''.join(random.choices('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789', k=length))\n",
    "\n",
    "# Generate random strings for each label category\n",
    "label1_strings = {0: generate_random_string(2), 1: generate_random_string(2)}\n",
    "label2_strings = {i: generate_random_string(3) for i in range(3)}\n",
    "label3_strings = {i: generate_random_string(5) for i in range(5)}\n",
    "\n",
    "# Save each string to a separate text file\n",
    "label1_path = \"/data/project/hf_tutorial/data/label1.txt\"\n",
    "label2_path = \"/data/project/hf_tutorial/data/label2.txt\"\n",
    "label3_path = \"/data/project/hf_tutorial/data/label3.txt\"\n",
    "\n",
    "def save_label_strings(label_strings, path):\n",
    "    with open(path, 'w') as f:\n",
    "        for label, string in label_strings.items():\n",
    "            f.write(f\"{label}: {string}\\n\")\n",
    "\n",
    "save_label_strings(label1_strings, label1_path)\n",
    "save_label_strings(label2_strings, label2_path)\n",
    "save_label_strings(label3_strings, label3_path)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "CommitInfo(commit_url='https://huggingface.co/datasets/ZJdog/hf_tutorial_dna/commit/8ebcb0406ec3cc2b6cbbdefac6b07ca720603508', commit_message='Initial commit', commit_description='', oid='8ebcb0406ec3cc2b6cbbdefac6b07ca720603508', pr_url=None, pr_revision=None, pr_num=None)"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from huggingface_hub import HfApi, HfFolder\n",
    "\n",
    "dataset_path = \"/data/project/hf_tutorial/data\"  # 你的数据集文件夹路径\n",
    "dataset_name = \"ZJdog/hf_tutorial_dna\"  # 数据集名称\n",
    "\n",
    "api = HfApi()\n",
    "# api.create_repo(repo_id=dataset_name, repo_type=\"dataset\")\n",
    "api.upload_folder(\n",
    "    repo_id=dataset_name,\n",
    "    folder_path=dataset_path,\n",
    "    repo_type=\"dataset\",\n",
    "    commit_message=\"Initial commit\"\n",
    ")\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}