Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
100K - 1M
ArXiv:
License:
File size: 2,367 Bytes
bfd4401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
{
"yelp_review_full": {
"description": "The Yelp reviews dataset consists of reviews from Yelp. It is extracted from the Yelp Dataset Challenge 2015 data.\nThe Yelp reviews full star dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu) from the above dataset.\nIt is first used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun.\nCharacter-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).\n",
"citation": "@inproceedings{zhang2015character,\n title={Character-level convolutional networks for text classification},\n author={Zhang, Xiang and Zhao, Junbo and LeCun, Yann},\n booktitle={Advances in neural information processing systems},\n pages={649--657},\n year={2015}\n}\n",
"homepage": "https://www.yelp.com/dataset",
"license": "https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf",
"features": {
"label": {
"names": [
"1 star",
"2 star",
"3 stars",
"4 stars",
"5 stars"
],
"_type": "ClassLabel"
},
"text": {
"dtype": "string",
"_type": "Value"
}
},
"task_templates": [
{
"task": "text-classification",
"label_column": "label"
}
],
"builder_name": "yelp_review_full",
"dataset_name": "yelp_review_full",
"config_name": "yelp_review_full",
"version": {
"version_str": "1.0.0",
"major": 1,
"minor": 0,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 483811554,
"num_examples": 650000,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 37271188,
"num_examples": 50000,
"dataset_name": null
}
},
"download_size": 322952369,
"dataset_size": 521082742,
"size_in_bytes": 844035111
}
} |