Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
100K - 1M
ArXiv:
License:
File size: 4,386 Bytes
27da5b3 1581050 27da5b3 1581050 27da5b3 704ae0d 27da5b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Yelp Review Full dataset for text classification."""
import csv
import os
import datasets
from datasets.tasks import TextClassification
_CITATION = """\
@inproceedings{zhang2015character,
title={Character-level convolutional networks for text classification},
author={Zhang, Xiang and Zhao, Junbo and LeCun, Yann},
booktitle={Advances in neural information processing systems},
pages={649--657},
year={2015}
}
"""
_DESCRIPTION = """\
The Yelp reviews dataset consists of reviews from Yelp. It is extracted from the Yelp Dataset Challenge 2015 data.
The Yelp reviews full star dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu) from the above dataset.
It is first used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun.
Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).
"""
_HOMEPAGE = "https://www.yelp.com/dataset"
_LICENSE = "https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf"
_URLs = {
"yelp_review_full": "https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9QhbZlU4dXhHTFhZQU0",
}
class YelpReviewFullConfig(datasets.BuilderConfig):
"""BuilderConfig for YelpReviewFull."""
def __init__(self, **kwargs):
"""BuilderConfig for YelpReviewFull.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(YelpReviewFullConfig, self).__init__(**kwargs)
class YelpReviewFull(datasets.GeneratorBasedBuilder):
"""Yelp Review Full Star Dataset 2015."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
YelpReviewFullConfig(
name="yelp_review_full", version=VERSION, description="Yelp Review Full Star Dataset 2015"
),
]
def _info(self):
features = datasets.Features(
{
"label": datasets.features.ClassLabel(
names=[
"1 star",
"2 star",
"3 stars",
"4 stars",
"5 stars",
]
),
"text": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[TextClassification(text_column="text", label_column="label")],
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[self.config.name]
data_dir = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "yelp_review_full_csv", "train.csv"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir, "yelp_review_full_csv", "test.csv"), "split": "test"},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
data = csv.reader(f, delimiter=",", quoting=csv.QUOTE_NONNUMERIC)
for id_, row in enumerate(data):
yield id_, {
"text": row[1],
"label": int(row[0]) - 1,
}
|