Datasets:
yelp
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,386 Bytes
27da5b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1581050
27da5b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1581050
27da5b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704ae0d
27da5b3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Yelp Review Full dataset for text classification."""


import csv
import os

import datasets
from datasets.tasks import TextClassification


_CITATION = """\
@inproceedings{zhang2015character,
  title={Character-level convolutional networks for text classification},
  author={Zhang, Xiang and Zhao, Junbo and LeCun, Yann},
  booktitle={Advances in neural information processing systems},
  pages={649--657},
  year={2015}
}
"""

_DESCRIPTION = """\
The Yelp reviews dataset consists of reviews from Yelp. It is extracted from the Yelp Dataset Challenge 2015 data.
The Yelp reviews full star dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu) from the above dataset.
It is first used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun.
Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).
"""

_HOMEPAGE = "https://www.yelp.com/dataset"

_LICENSE = "https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf"

_URLs = {
    "yelp_review_full": "https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9QhbZlU4dXhHTFhZQU0",
}


class YelpReviewFullConfig(datasets.BuilderConfig):
    """BuilderConfig for YelpReviewFull."""

    def __init__(self, **kwargs):
        """BuilderConfig for YelpReviewFull.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(YelpReviewFullConfig, self).__init__(**kwargs)


class YelpReviewFull(datasets.GeneratorBasedBuilder):
    """Yelp Review Full Star Dataset 2015."""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        YelpReviewFullConfig(
            name="yelp_review_full", version=VERSION, description="Yelp Review Full Star Dataset 2015"
        ),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "label": datasets.features.ClassLabel(
                    names=[
                        "1 star",
                        "2 star",
                        "3 stars",
                        "4 stars",
                        "5 stars",
                    ]
                ),
                "text": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            task_templates=[TextClassification(text_column="text", label_column="label")],
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        my_urls = _URLs[self.config.name]
        data_dir = dl_manager.download_and_extract(my_urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "yelp_review_full_csv", "train.csv"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": os.path.join(data_dir, "yelp_review_full_csv", "test.csv"), "split": "test"},
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples."""

        with open(filepath, encoding="utf-8") as f:
            data = csv.reader(f, delimiter=",", quoting=csv.QUOTE_NONNUMERIC)
            for id_, row in enumerate(data):
                yield id_, {
                    "text": row[1],
                    "label": int(row[0]) - 1,
                }