File size: 7,684 Bytes
a62c8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc20259
 
a62c8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217ab18
 
 
 
a62c8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217ab18
 
 
 
a62c8cb
217ab18
a62c8cb
 
d3c5791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a62c8cb
afb6bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
22b8b85
 
afb6bc0
22b8b85
 
 
afb6bc0
22b8b85
fc20259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afb6bc0
fc20259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import csv
import json
import os
from PIL import Image
import numpy as np
import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# _URLS = {
#     "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
#     "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
# }


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class NewDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    # BUILDER_CONFIGS = [
    #     datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
    #     datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
    # ]

    # DEFAULT_CONFIG_NAME = "first_domain"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
    features = datasets.Features({
        "image_id": datasets.Value("string"),
        "species": datasets.Value("string"),
        "scientific_name": datasets.Value("string"),
        "pics_array": datasets.Array3D(dtype="uint8", shape=(3, 768, 1024)), # Assuming images are RGB with shape 768x1024
        "image_resolution": {
            "width": datasets.Value("int32"),
            "height": datasets.Value("int32"),
        },
        "annotations": datasets.Sequence({
            "category_id": datasets.Value("int32"),
            "bounding_box": {
                "x_min": datasets.Value("float32"),
                "y_min": datasets.Value("float32"),
                "x_max": datasets.Value("float32"),
                "y_max": datasets.Value("float32"),
            },
        }),
    })
    return datasets.DatasetInfo(
        description=_DESCRIPTION,
        features=features,  # Here we define them because they are different between the two configurations
        homepage=_HOMEPAGE,
        license=_LICENSE,
        citation=_CITATION,
    )

    def _split_generators(self, dl_manager):
        # Only download data, no need to split
        data_files = dl_manager.download_and_extract({
            "csv": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/Labeled Stomatal Images.csv",
            "zip": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/Labeled Stomatal Images.zip"
        })
        
        species_info = pd.read_csv(data_files["csv"])
        extracted_images_path = os.path.join(data_files["zip"], "Labeled Stomatal Images")

        # Get all image filenames
        all_image_filenames = species_info['FileName'].apply(lambda x: x + '.jpg').tolist()
        
        # No longer need to randomize and split the dataset
        return [datasets.SplitGenerator(
            name=datasets.Split.TRAIN,
            gen_kwargs={
                "filepaths": all_image_filenames,
                "species_info": species_info,
                "data_dir": extracted_images_path,
            },
        )]

 
def save_metadata_as_json(image_id, annotations, species, scientific_name, json_path):
    metadata = {
        "image_id": image_id,
        "species": species,
        "scientific_name": scientific_name,
        "annotations": annotations
    }
    with open(json_path, 'w') as json_file:
        json.dump(metadata, json_file)

def _parse_yolo_labels(self, label_path, width, height):
    annotations = []
    with open(label_path, 'r') as file:
        yolo_data = file.readlines()

    for line in yolo_data:
        class_id, x_center_rel, y_center_rel, width_rel, height_rel = map(float, line.split())
        x_min = (x_center_rel - width_rel / 2) * width
        y_min = (y_center_rel - height_rel / 2) * height
        x_max = (x_center_rel + width_rel / 2) * width
        y_max = (y_center_rel + height_rel / 2) * height
        annotations.append({
            "category_id": int(class_id),
            "bounding_box": {
                "x_min": x_min,
                "y_min": y_min,
                "x_max": x_max,
                "y_max": y_max
            }
        })
    return annotations

def _generate_examples(self, filepaths, species_info, data_dir, split):
    """Yields examples as (key, example) tuples."""
    for file_name in filepaths:
        image_id = os.path.splitext(file_name)[0]  # Extract the base name without the file extension
        image_path = os.path.join(data_dir, f"{image_id}.jpg")
        label_path = os.path.join(data_dir, f"{image_id}.txt")
        json_path = os.path.join(data_dir, f"{image_id}.json")  # JSON file path
        
        with Image.open(image_path) as img:
            width, height = img.size
        
        species_row = species_info.loc[species_info['FileName'] == file_name]
        species = species_row['Species'].values[0] if not species_row.empty else None
        scientific_name = species_row['ScientificName'].values[0] if not species_row.empty else None

        annotations = self._parse_yolo_labels(label_path, width, height)
        
        # Save metadata to JSON
        save_metadata_as_json(image_id, annotations, species, scientific_name, json_path)
        
        yield image_id, {
            "image": img,  # Return the PIL image
            "metadata_json": json_path  # Return the path to the JSON file
        }