File size: 8,198 Bytes
a62c8cb fc20259 8baeea4 a62c8cb 217ab18 a62c8cb 217ab18 a62c8cb 217ab18 a62c8cb 02b5ff2 d3c5791 02b5ff2 d3c5791 a62c8cb afb6bc0 dc5f584 afb6bc0 22b8b85 afb6bc0 22b8b85 afb6bc0 22b8b85 fc20259 afb6bc0 fc20259 1a9c71a fc20259 97275fa fc20259 97275fa fc20259 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
from PIL import Image
import numpy as np
import pandas as pd
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# _URLS = {
# "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
# "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
# }
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class NewDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
# datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
# ]
# DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
features = datasets.Features({
"image_id": datasets.Value("string"),
"species": datasets.Value("string"),
"scientific_name": datasets.Value("string"),
"pics_array": datasets.Array3D(dtype="uint8", shape=(3, 768, 1024)), # Assuming images are RGB with shape 768x1024
"image_resolution": {
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
},
"annotations": datasets.Sequence({
"category_id": datasets.Value("int32"),
"bounding_box": {
"x_min": datasets.Value("float32"),
"y_min": datasets.Value("float32"),
"x_max": datasets.Value("float32"),
"y_max": datasets.Value("float32"),
},
}),
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features, # Here we define them because they are different between the two configurations
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# Only download data, no need to split
data_files = dl_manager.download_and_extract({
"csv": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/Labeled Stomatal Images.csv",
"zip": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/Labeled Stomatal Images.zip"
})
species_info = pd.read_csv(data_files["csv"])
extracted_images_path = os.path.join(data_files["zip"], "Labeled Stomatal Images")
# Get all image filenames
all_image_filenames = species_info['FileName'].apply(lambda x: x + '.jpg').tolist()
# No longer need to randomize and split the dataset
return [datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": all_image_filenames,
"species_info": species_info,
"data_dir": extracted_images_path,
},
)]
def save_metadata_as_json(image_id, annotations, species, scientific_name, json_path):
metadata = {
"image_id": image_id,
"species": species,
"scientific_name": scientific_name,
"annotations": annotations
}
with open(json_path, 'w') as json_file:
json.dump(metadata, json_file)
def _parse_yolo_labels(self, label_path, width, height):
annotations = []
with open(label_path, 'r') as file:
yolo_data = file.readlines()
for line in yolo_data:
class_id, x_center_rel, y_center_rel, width_rel, height_rel = map(float, line.split())
x_min = (x_center_rel - width_rel / 2) * width
y_min = (y_center_rel - height_rel / 2) * height
x_max = (x_center_rel + width_rel / 2) * width
y_max = (y_center_rel + height_rel / 2) * height
annotations.append({
"category_id": int(class_id),
"bounding_box": {
"x_min": x_min,
"y_min": y_min,
"x_max": x_max,
"y_max": y_max
}
})
return annotations
def _generate_examples(self, filepaths, species_info, data_dir, split):
"""Yields examples as (key, example) tuples."""
for file_name in filepaths:
image_id = os.path.splitext(file_name)[0] # Extract the base name without the file extension
image_path = os.path.join(data_dir, f"{image_id}.jpg")
label_path = os.path.join(data_dir, f"{image_id}.txt")
# Find the corresponding row in the CSV for the current image
species_row = species_info.loc[species_info['FileName'] == image_id]
if not species_row.empty:
species = species_row['Species'].values[0]
scientific_name = species_row['ScientificName'].values[0]
width = species_row['Width'].values[0]
height = species_row['Height'].values[0]
else:
# Default values if not found
species = None
scientific_name = None
width = 1024 # or some default value
height = 768 # or some default value
with Image.open(image_path) as img:
pics_array = np.array(img) # Convert the PIL image to a numpy array
annotations = self._parse_yolo_labels(label_path, width, height)
yield image_id, {
"image_id": image_id,
"species": species,
"scientific_name": scientific_name,
"pics_array": pics_array,
"image_resolution": {"width": width, "height": height},
"annotations": annotations,
"image": img # Return the PIL image
}
|