Datasets:
Tasks:
Image-Text-to-Text
Formats:
csv
Sub-tasks:
topic-classification
Size:
100K - 1M
ArXiv:
License:
File size: 10,412 Bytes
3eb29fa 0b238ab 4b0a655 0b238ab c1737d5 0b238ab c1737d5 0b238ab fafa545 c1737d5 0b238ab c1737d5 382a53c 0b238ab 4e56077 0b238ab 4e56077 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
---
annotations_creators:
- found
language_creators:
- expert-generated
language:
- ace
- acm
- acq
- aeb
- af
- ajp
- ak
- als
- am
- apc
- ar
- ars
- ary
- arz
- as
- ast
- awa
- ayr
- azb
- azj
- ba
- bm
- ban
- be
- bem
- bn
- bho
- bjn
- bo
- bs
- bug
- bg
- ca
- ceb
- cs
- cjk
- ckb
- crh
- cy
- da
- de
- dik
- dyu
- dz
- el
- en
- eo
- et
- eu
- ee
- fo
- fj
- fi
- fon
- fr
- fur
- fuv
- gaz
- gd
- ga
- gl
- gn
- gu
- ht
- ha
- he
- hi
- hne
- hr
- hu
- hy
- ig
- ilo
- id
- is
- it
- jv
- ja
- kab
- kac
- kam
- kn
- ks
- ka
- kk
- kbp
- kea
- khk
- km
- ki
- rw
- ky
- kmb
- kmr
- knc
- kg
- ko
- lo
- lij
- li
- ln
- lt
- lmo
- ltg
- lb
- lua
- lg
- luo
- lus
- lvs
- mag
- mai
- ml
- mar
- min
- mk
- mt
- mni
- mos
- mi
- my
- nl
- nn
- nb
- npi
- nqo
- nso
- nus
- ny
- oc
- ory
- pag
- pa
- pap
- pbt
- pes
- plt
- pl
- pt
- prs
- quy
- ro
- rn
- ru
- sg
- sa
- sat
- scn
- shn
- si
- sk
- sl
- sm
- sn
- sd
- so
- st
- es
- sc
- sr
- ss
- su
- sv
- swh
- szl
- ta
- taq
- tt
- te
- tg
- tl
- th
- ti
- tpi
- tn
- ts
- tk
- tum
- tr
- tw
- tzm
- ug
- uk
- umb
- ur
- uzn
- vec
- vi
- war
- wo
- xh
- ydd
- yo
- yue
- zh
- zsm
- zu
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
pretty_name: MVL-SIB
language_details: >-
ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab,
aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab,
asm_Beng, ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl,
bam_Latn, ban_Latn,bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab, bjn_Latn,
bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn,
cjk_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, dik_Latn,
dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn, est_Latn, eus_Latn,
ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn, fra_Latn,
fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr,
hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn,
hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn,
jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva,
kat_Geor, knc_Arab, knc_Latn, kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr,
kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn, kon_Latn, kor_Hang, kmr_Latn,
lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn,
ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, mag_Deva,
mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn,
mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn,
nno_Latn, nob_Latn, npi_Deva, nqo_Nkoo, nso_Latn, nus_Latn, nya_Latn, oci_Latn,
gaz_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn,
prs_Arab, pbt_Arab, quy_Latn, ron_Latn, run_Latn, rus_Cyrl, sag_Latn,
san_Deva, sat_Beng, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn,
smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, als_Latn,
srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn, szl_Latn,
tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi,
taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn,
tur_Latn, twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab,
uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr,
yor_Latn, yue_Hant, zho_Hans, zho_Hant, zul_Latn
size_categories:
- 1K<n<10K
source_datasets:
- original
tags:
- sib-200
- sib200
task_categories:
- text-classification
- visual-question-answering
task_ids:
- topic-classification
---
# MVL-SIB: Massively Multilingual Visual-Language SIB
## Introduction
MVL-SIB is a multilingual dataset that provides image-sentence pairs spanning 205 languages and 7 topical categories (`entertainment`, `geography`, `health`, `politics`, `science`, `sports`, `travel`). It was constructed by extending the [SIB-200](https://huggingface.co/datasets/Davlan/sib200) benchmark. For each topic, a set of [10 permissively licensed images](https://huggingface.co/datasets/WueNLP/mvl-sib200/tree/main/data/images/sib200) was manually collected to distinctly represent each category. The dataset creates three instances per original sentence, pairing it with multiple positive and negative image-sentence combinations to challenge both multimodal reasoning and language understanding. MVL-SIB supports detailed evaluations across text-only and cross-modal tasks.
## Usage Example
Below is an example of how to load and use the MVL-SIB dataset with the Hugging Face `datasets` library in Python:
```python
from datasets import load_dataset
# Load the MVL-SIB dataset for the 'img2sent' (or 'sent2img') task in English
dataset = load_dataset("wuenlp/mvl-sib200", name="img2sent.eng_Latn", trust_remote_code=True)
print(dataset[0])
{'images': ['.cache/huggingface/hub/datasets--wuenlp--mvl-sib/snapshots/96384481f8688607140d69ca45de30cdb18c8596/data/images/sib200/health_5.jpg',
'.cache/huggingface/hub/datasets--wuenlp--mvl-sib/snapshots/96384481f8688607140d69ca45de30cdb18c8596/data/images/sib200/health_3.jpg',
'.cache/huggingface/hub/datasets--wuenlp--mvl-sib/snapshots/96384481f8688607140d69ca45de30cdb18c8596/data/images/sib200/health_4.jpg',
'.cache/huggingface/hub/datasets--wuenlp--mvl-sib/snapshots/96384481f8688607140d69ca45de30cdb18c8596/data/images/sib200/health_6.jpg',
'.cache/huggingface/hub/datasets--wuenlp--mvl-sib/snapshots/96384481f8688607140d69ca45de30cdb18c8596/data/images/sib200/health_1.jpg'],
'sentences': ['Der „typische” Besuch beinhaltet die Flugreise zum internationalen Flughafen von Orlando, dann die Busfahrt zu einem Disney-Hotel auf dem Gelände, danach einen etwa wochenlangen Aufenthalt dort, ohne das Disney-Gelände zu verlassen, und anschließend die Heimreise.',
'Das KI-System wird heute häufig in den Bereichen Wirtschaft, Medizin, Ingenieurwesen und Militär eingesetzt und ist zudem in zahlreiche Softwareanwendungen für Heimcomputer und Videospiele eingebaut worden.',
'Am Montag haben die Wisenschaftler der Stanford University School of Medicine die Erfindung eines neuen Diagnosetools bekanntgegeben, mit dem Zellen nach ihrem Typ sortiert werden können: ein winziger, ausdruckbarer Chip, der für jeweils etwa einen US-Cent mit Standard-Tintenstrahldruckern hergestellt werden kann.',
'1895 unterzeichnete die Regierung der Qing-Dynastie nach der Niederlage im ersten Chinesisch-Japanischen Krieg (1894-1895) den Vertrag von Shimonoseki, in dem sie die Souveränität über Taiwan an Japan abtrat, welches die Insel bis 1945 regierte.'],
'categories': ['travel', 'science', 'health', 'politics'],
'label': 2,
'id': 0,
'index_id': 0}
```
## Tasks
Large vision-language models must select one of 4 candidate sentences that best matches the topic of the reference images (\`images-to-sentence') or, conversely, choose one of 4 candidate images corresponding to the topic of the reference sentences (\`sentences-to-image'). We present the model with the list of topics that images and sentences may be associated with. Otherwise, it would be unclear along which dimension the model should match images and sentences. The portion of the prompt that introduces the task is provided in English, while the sentences to be topically aligned with images are presented in one of the 205 languages included in MVL-SIB.
### Images-To-Sentence

#### Suggested Prompt
```markdown
Which sentence best matches the topic of the images? The images and the sentences each belong
to one of the following topics: "entertainment", "geography", "health", "politics", "science and technology", "sports", or "travel". Choose one sentence from A, B, C, or D. Output only a single letter!
# Images
<IMG_TOKENS>
<IMG_TOKENS>
<IMG_TOKENS>
<IMG_TOKENS>
<IMG_TOKENS>
# Sentences
A. ```Maroochydore führte am Ende die Rangfolge an, mit sechs Punkten Vorsprung vor Noosa als Zweitem.```
B. ```Es wurden keine schwere Verletzungen gemeldet, jedoch mussten mindestens fünf der zur Zeit der Explosion Anwesenden aufgrund von Schocksymptomen behandelt werden.```
C. ```Finnland ist ein großartiges Reiseziel für Bootstouren. Das „Land der tausend Seen“ hat auch Tausende von Inseln – in den Seen und in den Küstenarchipelen.```
D. ```Es ist auch nicht erforderlich, dass Sie eine lokale Nummer von der Gemeinde erhalten, in der Sie leben. Sie können eine Internetverbindung über Satellit in der Wildnis v on Chicken in Alaska erhalten und eine Nummer auswählen, die vorgibt, dass Sie im sonnigen Arizona
sind.```
Your answer letter:
```
### Sentences-To-Image

#### Suggested Prompt
```markdown
Which image best matches the topic of the sentences? The sentences and the images each belong to one of the following topics: "entertainment", "geography", "health", "politics", "science and technology", "sports", or "travel". Choose one image from A, B, C, or D. Output only a single letter!
# Sentences
- ```Maroochydore führte am Ende die Rangfolge an, mit sechs Punkten Vorsprung vor Noosa als Zweitem.```
- ```Die Schlagmänner der mittleren Reihe, Sachin Tendulkar und Rahul Dravid, zeigten gute Leistungen und erzielten eine Partnerschaft mit 100 Runs.```
- ```Da pro Tag nur achtzehn Medaillen zur Verfügung stehen, hat es ein Anzahl an Ländern nicht auf das Podium geschafft.```
- ```Wintersportarten sind in den nördlichen Regionen am beliebtesten und Italiener nehmen an internationalen Wettkämpfen und olympischen Spielen teil.```
- ```Nach dem Rennen bleibt Keselowski mit 2.250 Punkten Spitzenreiter in der Fahrerwertung```
# Images
A. <IMG_TOKENS>
B. <IMG_TOKENS>
C. <IMG_TOKENS>
D. <IMG_TOKENS>
Your answer letter:
```
# Languages
The list of languages availabe in MVL-SIB is available [here](https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200). In addition, [SIB-200](https://huggingface.co/datasets/Davlan/sib200) also adds N'Koo.
|