File size: 6,039 Bytes
0070fce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import math
import re

import gradio as gr
import modules.scripts as scripts
from modules import devices, images, processing, shared
from modules.processing import Processed
from modules.shared import opts, state
from PIL import Image


class SDUpscale(scripts.Script):
    def title(self):
        return "SD Upscale"

    def show(self, is_img2img):
        return is_img2img

    def ui(self, is_img2img):
        gr.HTML(
            """<p align="center">Upscale the image by the selected <b>Scale Factor</b>;

            use the <b>Width</b> and <b>Height</b> to set the tile size;

            use the <b>Batch size</b> to process multiple tiles at once</p>"""
        )

        with gr.Row():
            upscaler_index = gr.Dropdown(
                label="Upscaler",
                choices=[x.name for x in shared.sd_upscalers],
                value=shared.sd_upscalers[0].name,
                type="index",
                elem_id=self.elem_id("upscaler_index"),
            )
            scale_factor = gr.Slider(
                label="Scale Factor",
                value=2.0,
                minimum=1.0,
                maximum=8.0,
                step=0.05,
                elem_id=self.elem_id("scale_factor"),
            )

        with gr.Row():
            overlap = gr.Slider(
                label="Tile Overlap",
                value=64,
                minimum=0,
                maximum=256,
                step=16,
                elem_id=self.elem_id("overlap"),
            )
            override = gr.Checkbox(
                label="Save to Extras folder instead",
                value=False,
                elem_id=self.elem_id("override"),
            )

        return [overlap, upscaler_index, scale_factor, override]

    def run(self, p, overlap, upscaler_index, scale_factor, override):
        if isinstance(upscaler_index, str):
            upscaler = next(
                (x for x in shared.sd_upscalers if x.name == upscaler_index),
                None,
            )
            assert upscaler is not None
        else:
            assert isinstance(upscaler_index, int)
            upscaler = shared.sd_upscalers[upscaler_index]

        processing.fix_seed(p)

        p.extra_generation_params["SD Upscale - Overlap"] = overlap
        p.extra_generation_params["SD Upscale - Upscaler"] = upscaler.name

        initial_info = None
        seed = p.seed

        init_img = p.init_images[0]
        init_img = images.flatten(init_img, opts.img2img_background_color)

        if upscaler.name != "None":
            img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path)
        else:
            img = init_img

        devices.torch_gc()

        grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=overlap)

        batch_size = p.batch_size
        upscale_count = p.n_iter
        p.n_iter = 1
        p.do_not_save_grid = True
        p.do_not_save_samples = True

        work = []

        for _, _, row in grid.tiles:
            for tiledata in row:
                work.append(tiledata[2])

        batch_count = math.ceil(len(work) / batch_size)
        state.job_count = batch_count * upscale_count

        print(
            f"""

[SD Upscale]

- Processing {len(grid.tiles[0][2])}x{len(grid.tiles)} tiles

- totaling {len(work)} images at a batch size of {batch_size}

- resulting in {state.job_count} iterations

            """
        )

        result_images = []
        for n in range(upscale_count):
            start_seed = seed + n
            p.seed = start_seed

            work_results = []
            for i in range(batch_count):
                p.batch_size = batch_size
                p.init_images = work[i * batch_size : (i + 1) * batch_size]

                state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}"
                processed = processing.process_images(p)

                if initial_info is None:
                    initial_info = processed.info

                p.seed = processed.seed + 1
                work_results += processed.images

            image_index = 0
            for _, _, row in grid.tiles:
                for tiledata in row:
                    tiledata[2] = (
                        work_results[image_index]
                        if image_index < len(work_results)
                        else Image.new("RGB", (p.width, p.height))
                    )
                    image_index += 1

            combined_image = images.combine_grid(grid)
            result_images.append(combined_image)

            if opts.samples_save:
                if override:
                    images.save_image(
                        combined_image,
                        path=opts.outdir_samples or opts.outdir_extras_samples,
                        basename="",
                        extension=opts.samples_format,
                        info=initial_info,
                        short_filename=True,
                        no_prompt=True,
                        grid=False,
                        pnginfo_section_name="extras",
                        existing_info=None,
                        forced_filename=None,
                        suffix="",
                    )
                else:
                    images.save_image(
                        combined_image,
                        p.outpath_samples,
                        "",
                        start_seed,
                        p.prompt,
                        opts.samples_format,
                        info=initial_info,
                        p=p,
                    )

        new_w, new_h = img.size
        pattern = r"Size: (\d+)x(\d+)"
        initial_info = re.sub(pattern, f"Size: {new_w}x{new_h}", initial_info)

        return Processed(p, result_images, seed, initial_info)