File size: 3,211 Bytes
0070fce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import random
import string
import time

import cv2
import numpy as np
import torch
from ldm_patched.modules import model_management


def prepare_free_memory(aggressive=False):
    if aggressive:
        model_management.unload_all_models()
        print("Cleanup all memory")
        return

    model_management.free_memory(
        memory_required=model_management.minimum_inference_memory(),
        device=model_management.get_torch_device(),
    )
    print("Cleanup minimal inference memory")


def apply_circular_forge(model, tiling_enabled=False):
    if model.tiling_enabled == tiling_enabled:
        return

    print(f"Tiling: {tiling_enabled}")
    model.tiling_enabled = tiling_enabled

    def flatten(el):
        flattened = [flatten(children) for children in el.children()]
        res = [el]
        for c in flattened:
            res += c
        return res

    layers = flatten(model)

    for layer in [layer for layer in layers if "Conv" in type(layer).__name__]:
        layer.padding_mode = "circular" if tiling_enabled else "zeros"


def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y


def generate_random_filename(extension=".txt"):
    timestamp = time.strftime("%Y%m%d-%H%M%S")
    random_string = "".join(random.choices(string.ascii_lowercase + string.digits, k=5))
    filename = f"{timestamp}-{random_string}{extension}"
    return filename


@torch.no_grad()
@torch.inference_mode()
def pytorch_to_numpy(x):
    return [np.clip(255.0 * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]


@torch.no_grad()
@torch.inference_mode()
def numpy_to_pytorch(x):
    y = x.astype(np.float32) / 255.0
    y = y[None]
    y = np.ascontiguousarray(y.copy())
    y = torch.from_numpy(y).float()
    return y


def pad64(x):
    return int(np.ceil(float(x) / 64.0) * 64 - x)


def safer_memory(x):
    # Fix many MAC/AMD problems
    return np.ascontiguousarray(x.copy()).copy()


def resize_image_with_pad(img, resolution):
    H_raw, W_raw, _ = img.shape
    k = float(resolution) / float(min(H_raw, W_raw))
    interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
    H_target = int(np.round(float(H_raw) * k))
    W_target = int(np.round(float(W_raw) * k))
    img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
    H_pad, W_pad = pad64(H_target), pad64(W_target)
    img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode="edge")

    def remove_pad(x):
        return safer_memory(x[:H_target, :W_target])

    return safer_memory(img_padded), remove_pad


def lazy_memory_management(model):
    required_memory = model_management.module_size(model) + model_management.minimum_inference_memory()
    model_management.free_memory(required_memory, device=model_management.get_torch_device())