File size: 1,975 Bytes
0070fce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from ldm_patched.modules import ops, model_management
from ldm_patched.modules.model_patcher import ModelPatcher
from transformers import modeling_utils


class DiffusersModelPatcher:
    def __init__(self, pipeline_class, dtype=torch.float16, *args, **kwargs):
        load_device = model_management.get_torch_device()
        offload_device = torch.device("cpu")

        if not model_management.should_use_fp16(device=load_device):
            dtype = torch.float32

        self.dtype = dtype

        with ops.use_patched_ops(ops.manual_cast):
            with modeling_utils.no_init_weights():
                self.pipeline = pipeline_class.from_pretrained(*args, **kwargs)

        if hasattr(self.pipeline, "unet"):
            if hasattr(self.pipeline.unet, "set_attn_processor"):
                try:
                    from diffusers.models.attention_processor import AttnProcessor2_0

                    self.pipeline.unet.set_attn_processor(AttnProcessor2_0())
                    print("Attention optimization applied to DiffusersModelPatcher")
                except ImportError:
                    print("Failed to import diffusers; please install it manually")

        self.pipeline = self.pipeline.to(device=offload_device)

        if self.dtype is torch.float16:
            self.pipeline = self.pipeline.half()

        self.pipeline.eval()

        self.patcher = ModelPatcher(
            model=self.pipeline,
            load_device=load_device,
            offload_device=offload_device,
        )

    def prepare_memory_before_sampling(self, batchsize, latent_width, latent_height):
        area = 2 * batchsize * latent_width * latent_height
        inference_memory = (((area * 0.6) / 0.9) + 1024) * (2**20)
        model_management.load_models_gpu(models=[self.patcher], memory_required=inference_memory)

    def move_tensor_to_current_device(self, x):
        return x.to(device=self.patcher.current_device, dtype=self.dtype)