File size: 2,953 Bytes
0070fce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch


def apply_controlnet_advanced(
    unet,
    controlnet,
    image_bchw,
    strength,
    start_percent,
    end_percent,
    positive_advanced_weighting=None,
    negative_advanced_weighting=None,
    advanced_frame_weighting=None,
    advanced_sigma_weighting=None,
    advanced_mask_weighting=None,
):
    """
    ### positive_advanced_weighting or negative_advanced_weighting
    UNet has input, middle, output blocks, and we can give different weights to each layers in all blocks.
    This is helpful for some high-res fix passes.
    Below is an example for stronger control in middle block:
    ```
        positive_advanced_weighting = {
            'input': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2],
            'middle': [1.0],
            'output': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2]
        }
        negative_advanced_weighting = {
            'input': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2],
            'middle': [1.0],
            'output': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2]
        }
    ```

    ### advanced_frame_weighting
    The advanced_frame_weighting is a weight applied to each image in a batch.
    The length of this list must be same with batch size.
    For example, if batch size is 5, you can use advanced_frame_weighting = [0, 0.25, 0.5, 0.75, 1.0]
    If you view the 5 images as 5 frames in a video, this will lead to progressively stronger control over time.

    ### advanced_sigma_weighting
    The advanced_sigma_weighting allows you to dynamically compute
    control weights given diffusion timestep (sigma).
    For example below code can softly make beginning steps stronger than ending steps:
    ```
        sigma_max = unet.model.model_sampling.sigma_max
        sigma_min = unet.model.model_sampling.sigma_min
        advanced_sigma_weighting = lambda s: (s - sigma_min) / (sigma_max - sigma_min)
    ```

    ### advanced_mask_weighting
    A mask can be applied to control signals.
    This should be a tensor with shape [B, 1, H, W] where the H and W can be arbitrary.
    This mask will be resized automatically to match the shape of all injection layers.
    """

    cnet = controlnet.copy().set_cond_hint(
        image_bchw,
        strength,
        (start_percent, end_percent),
    )
    cnet.positive_advanced_weighting = positive_advanced_weighting
    cnet.negative_advanced_weighting = negative_advanced_weighting
    cnet.advanced_frame_weighting = advanced_frame_weighting
    cnet.advanced_sigma_weighting = advanced_sigma_weighting

    if advanced_mask_weighting is not None:
        assert isinstance(advanced_mask_weighting, torch.Tensor)
        B, C, H, W = advanced_mask_weighting.shape
        assert B > 0 and C == 1 and H > 0 and W > 0

    cnet.advanced_mask_weighting = advanced_mask_weighting

    m = unet.clone()
    m.add_patched_controlnet(cnet)
    return m