Datasets:
Formats:
parquet
Languages:
English
Size:
10K - 100K
Update README.md
Browse files
README.md
CHANGED
|
@@ -72,149 +72,3 @@ This dataset contains both metadata and audio files for English speech recogniti
|
|
| 72 |
"duration": 6.87
|
| 73 |
}
|
| 74 |
```
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
## Training NeMo Conformer ASR
|
| 78 |
-
|
| 79 |
-
### 1. Pull and Run NeMo Docker
|
| 80 |
-
```bash
|
| 81 |
-
# Pull the NeMo Docker image
|
| 82 |
-
docker pull nvcr.io/nvidia/nemo:24.05
|
| 83 |
-
|
| 84 |
-
# Run the container with GPU support
|
| 85 |
-
docker run --gpus all -it --rm \
|
| 86 |
-
-v /external1:/external1 \
|
| 87 |
-
-v /external2:/external2 \
|
| 88 |
-
-v /external3:/external3 \
|
| 89 |
-
--shm-size=8g \
|
| 90 |
-
-p 8888:8888 -p 6006:6006 \
|
| 91 |
-
--ulimit memlock=-1 \
|
| 92 |
-
--ulimit stack=67108864 \
|
| 93 |
-
nvcr.io/nvidia/nemo:24.05
|
| 94 |
-
```
|
| 95 |
-
|
| 96 |
-
### 2. Create Training Script
|
| 97 |
-
Create a script `train_nemo_asr.py`:
|
| 98 |
-
```python
|
| 99 |
-
from nemo.collections.asr.models import EncDecCTCModel
|
| 100 |
-
from nemo.collections.asr.data.audio_to_text import TarredAudioToTextDataset
|
| 101 |
-
import pytorch_lightning as pl
|
| 102 |
-
from omegaconf import OmegaConf
|
| 103 |
-
import os
|
| 104 |
-
|
| 105 |
-
# Load the dataset from Hugging Face
|
| 106 |
-
from datasets import load_dataset
|
| 107 |
-
dataset = load_dataset("WhissleAI/Meta_STT_EN_Set2")
|
| 108 |
-
|
| 109 |
-
# Create config
|
| 110 |
-
config = OmegaConf.create({
|
| 111 |
-
'model': {
|
| 112 |
-
'name': 'EncDecCTCModel',
|
| 113 |
-
'train_ds': {
|
| 114 |
-
'manifest_filepath': None, # Will be set dynamically
|
| 115 |
-
'batch_size': 32,
|
| 116 |
-
'shuffle': True,
|
| 117 |
-
'num_workers': 4,
|
| 118 |
-
'pin_memory': True,
|
| 119 |
-
'use_start_end_token': False,
|
| 120 |
-
},
|
| 121 |
-
'validation_ds': {
|
| 122 |
-
'manifest_filepath': None, # Will be set dynamically
|
| 123 |
-
'batch_size': 32,
|
| 124 |
-
'shuffle': False,
|
| 125 |
-
'num_workers': 4,
|
| 126 |
-
'pin_memory': True,
|
| 127 |
-
'use_start_end_token': False,
|
| 128 |
-
},
|
| 129 |
-
'optim': {
|
| 130 |
-
'name': 'adamw',
|
| 131 |
-
'lr': 0.001,
|
| 132 |
-
'weight_decay': 0.01,
|
| 133 |
-
},
|
| 134 |
-
'trainer': {
|
| 135 |
-
'devices': 1,
|
| 136 |
-
'accelerator': 'gpu',
|
| 137 |
-
'max_epochs': 100,
|
| 138 |
-
'precision': 16,
|
| 139 |
-
}
|
| 140 |
-
}
|
| 141 |
-
})
|
| 142 |
-
|
| 143 |
-
# Initialize model
|
| 144 |
-
model = EncDecCTCModel(cfg=config.model)
|
| 145 |
-
|
| 146 |
-
# Create trainer
|
| 147 |
-
trainer = pl.Trainer(**config.model.trainer)
|
| 148 |
-
|
| 149 |
-
# Train
|
| 150 |
-
trainer.fit(model)
|
| 151 |
-
```
|
| 152 |
-
|
| 153 |
-
### 3. Create Config File
|
| 154 |
-
Create a config file `config.yaml`:
|
| 155 |
-
```yaml
|
| 156 |
-
model:
|
| 157 |
-
name: "EncDecCTCModel"
|
| 158 |
-
train_ds:
|
| 159 |
-
manifest_filepath: "train.json"
|
| 160 |
-
batch_size: 32
|
| 161 |
-
shuffle: true
|
| 162 |
-
num_workers: 4
|
| 163 |
-
pin_memory: true
|
| 164 |
-
use_start_end_token: false
|
| 165 |
-
|
| 166 |
-
validation_ds:
|
| 167 |
-
manifest_filepath: "valid.json"
|
| 168 |
-
batch_size: 32
|
| 169 |
-
shuffle: false
|
| 170 |
-
num_workers: 4
|
| 171 |
-
pin_memory: true
|
| 172 |
-
use_start_end_token: false
|
| 173 |
-
|
| 174 |
-
optim:
|
| 175 |
-
name: adamw
|
| 176 |
-
lr: 0.001
|
| 177 |
-
weight_decay: 0.01
|
| 178 |
-
|
| 179 |
-
trainer:
|
| 180 |
-
devices: 1
|
| 181 |
-
accelerator: "gpu"
|
| 182 |
-
max_epochs: 100
|
| 183 |
-
precision: 16
|
| 184 |
-
```
|
| 185 |
-
|
| 186 |
-
### 4. Start Training
|
| 187 |
-
```bash
|
| 188 |
-
# Inside the NeMo container
|
| 189 |
-
python -m torch.distributed.launch --nproc_per_node=1 \
|
| 190 |
-
train_nemo_asr.py \
|
| 191 |
-
--config-path=. \
|
| 192 |
-
--config-name=config.yaml
|
| 193 |
-
```
|
| 194 |
-
|
| 195 |
-
## Usage Notes
|
| 196 |
-
|
| 197 |
-
1. The dataset includes both metadata and audio files.
|
| 198 |
-
2. Audio files are stored in the dataset repository.
|
| 199 |
-
3. For optimal performance:
|
| 200 |
-
- Use a GPU with at least 16GB VRAM
|
| 201 |
-
- Adjust batch size based on your GPU memory
|
| 202 |
-
- Consider gradient accumulation for larger effective batch sizes
|
| 203 |
-
- Monitor training with TensorBoard (accessible via port 6006)
|
| 204 |
-
|
| 205 |
-
## Common Issues and Solutions
|
| 206 |
-
|
| 207 |
-
1. **Memory Issues**:
|
| 208 |
-
- Reduce batch size if you encounter OOM errors
|
| 209 |
-
- Use gradient accumulation for larger effective batch sizes
|
| 210 |
-
- Enable mixed precision training (fp16)
|
| 211 |
-
|
| 212 |
-
2. **Training Speed**:
|
| 213 |
-
- Increase num_workers based on your CPU cores
|
| 214 |
-
- Use pin_memory=True for faster data transfer to GPU
|
| 215 |
-
- Consider using tarred datasets for faster I/O
|
| 216 |
-
|
| 217 |
-
3. **Model Performance**:
|
| 218 |
-
- Adjust learning rate based on your batch size
|
| 219 |
-
- Use learning rate warmup for better convergence
|
| 220 |
-
- Consider using a pretrained model as initialization
|
|
|
|
| 72 |
"duration": 6.87
|
| 73 |
}
|
| 74 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|