VidProM / README.md
WenhaoWang's picture
Update README.md
a47a2c0 verified
|
raw
history blame
2.07 kB
metadata
license: cc-by-nc-4.0
task_categories:
  - text-to-video
language:
  - en
size_categories:
  - 1M<n<10M
tags:
  - prompts
  - text-to-video

Summary

This is the dataset proposed in our paper "VidProM: A Million-scale Real Prompt-Gallery Dataset for Text-to-Video Diffusion Models"

VidProM is the first dataset featuring 1.67 million unique text-to-video prompts and 6.69 million videos generated from 4 different state-of-the-art diffusion models. It inspires many exciting new research areas, such as Text-to-Video Prompt Engineering, Efficient Video Generation, Fake Video Detection, and Video Copy Detection for Diffusion Models.

Directory

*DATA_PATH
    *original_files
        *generate_1_ori.html
        *generate_2_ori.html
        ...
    *pika_videos
        *pika_videos_1.tar
        *pika_videos_2.tar
        ...
    *vc2_videos
        *vc2_videos_1.tar
        *vc2_videos_2.tar
        ...
    *t2vz_videos
        *t2vz_videos_1.tar
        *t2vz_videos_2.tar
        ...
    *ms_videos
        *ms_videos_1.tar
        *ms_videos_2.tar
        ...
    *VidProM_unique.csv
    *VidProM_semantic_unique.csv
    *VidProM_embed.hdf5

Download

Automatically

Install the datasets library first, by:

pip install datasets

Then it can be downloaded automatically with

import numpy as np
from datasets import load_dataset
dataset = load_dataset('WenhaoWang/VidProM')

Manual

You can download each file by wget, for instance:

wget https://huggingface.co/datasets/WenhaoWang/VidProM/resolve/main/VidProM_unique.csv

Explanation

Datapoint

Comparison with DiffusionDB

Please check our paper for a detailed comparison.

Citation