File size: 8,560 Bytes
b9dc0b4
feaf987
 
b9dc0b4
feaf987
 
 
 
 
b9dc0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46aff9a
 
 
3e423dc
735cceb
3e423dc
1383e6c
735cceb
1383e6c
557fa65
1383e6c
b9dc0b4
 
 
46aff9a
 
3e423dc
 
1383e6c
 
b9dc0b4
 
 
 
735cceb
 
 
feaf987
5db2163
077775d
 
 
 
 
 
3681a29
077775d
 
c764edf
 
 
 
 
c2828e2
 
 
 
c764edf
20eb853
 
 
5db2163
f0807b4
5db2163
f4e7af1
8ad70fa
4bef673
8ad70fa
 
5db2163
 
 
7715fa7
f0807b4
7715fa7
f4e7af1
8ad70fa
4bef673
8ad70fa
 
7715fa7
5db2163
3bd0ebe
53d779f
3bd0ebe
 
 
 
 
 
 
 
20eb853
 
f0807b4
f589043
83a9ebf
4c462bb
 
142f8c4
 
 
4b97856
83a9ebf
4c462bb
 
 
 
 
 
 
 
 
142f8c4
 
20eb853
83a9ebf
142f8c4
6c7d239
 
 
 
0b26114
6c7d239
0b26114
 
 
 
 
f0807b4
 
c8f30ea
4c462bb
c8f30ea
 
 
 
20eb853
 
80a0047
3157372
 
80a0047
419cef8
80a0047
5db2163
142f8c4
571b49d
142f8c4
9e45f6e
 
142f8c4
 
8dbb306
 
142f8c4
 
 
4c7d242
beaae8c
4c7d242
 
 
 
 
 
 
5db2163
cba11af
20fad76
 
 
cba11af
 
 
 
dc9d44d
cba11af
 
3c98c82
096f24e
3c98c82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
735cceb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
---
language:
- en
license: cc-by-nc-4.0
size_categories:
- 1M<n<10M
task_categories:
- image-to-video
- text-to-video
dataset_info:
  features:
  - name: UUID
    dtype: string
  - name: Text_Prompt
    dtype: string
  - name: Image_Prompt
    dtype: image
  - name: Subject
    dtype: string
  - name: Timestamp
    dtype: string
  - name: Text_NSFW
    dtype: float32
  - name: Image_NSFW
    dtype: string
  splits:
  - name: Full
    num_bytes: 13440652664.125
    num_examples: 1701935
  - name: Subset
    num_bytes: 790710630
    num_examples: 100000
  - name: Eval
    num_bytes: 78258893
    num_examples: 10000
  download_size: 27500759907
  dataset_size: 27750274851.25
configs:
- config_name: default
  data_files:
  - split: Full
    path: data/Full-*
  - split: Subset
    path: data/Subset-*
  - split: Eval
    path: data/Eval-*
tags:
- prompt
- image-to-video
- text-to-video
- visual-generation
- video-generation
pretty_name: TIP-I2V
---

# Summary
This is the dataset proposed in our paper [**TIP-I2V: A Million-Scale Real Prompt-Gallery Dataset for Image-to-Video Diffusion Models**](https://arxiv.org/abs/2411.xxxxx).

TIP-I2V is the first dataset comprising over 1.70 million unique user-provided text and image prompts. Besides the prompts, TIP-I2V also includes videos generated by five state-of-the-art image-to-video models (Pika, Stable Video Diffusion, Open-Sora, I2VGen-XL, and CogVideoX-5B). The TIP-I2V contributes to the development of better and safer image-to-video models.

<p align="center">
  <img src="https://huggingface.co/datasets/WenhaoWang/TIP-I2V/resolve/main/assets/teasor.png" width="1000">
</p>

# Datapoint
<p align="center">
  <img src="https://huggingface.co/datasets/WenhaoWang/TIP-I2V/resolve/main/assets/datapoint.png" width="1000">
</p>

# Statistics
<p align="center">
  <img src="https://huggingface.co/datasets/WenhaoWang/TIP-I2V/resolve/main/assets/stat.png" width="1000">
</p>

# Download
## Download the text and (compressed) image prompts with related information

```python
# Full (text and compressed image) prompts: ~13.4G
from datasets import load_dataset
ds = load_dataset("WenhaoWang/TIP-I2V", split='Full', streaming=True)

# Convert to Pandas format (it may be slow)
import pandas as pd
df = pd.DataFrame(ds)
```


```python
# 100k subset (text and compressed image) prompts: ~0.8G
from datasets import load_dataset
ds = load_dataset("WenhaoWang/TIP-I2V", split='Subset', streaming=True)

# Convert to Pandas format (it may be slow)
import pandas as pd
df = pd.DataFrame(ds)
```

```python
# 10k TIP-Eval (text and compressed image) prompts: ~0.08G
from datasets import load_dataset
ds = load_dataset("WenhaoWang/TIP-I2V", split='Eval', streaming=True)

# Convert to Pandas format (it may be slow)
import pandas as pd
df = pd.DataFrame(ds)
```

## Download the embeddings for text and image prompts

```python
# Embeddings for full text prompts (~21G) and image prompts (~3.5G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Full_Text_Embedding.parquet", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Full_Image_Embedding.parquet", repo_type="dataset")
```

```python
# Embeddings for 100k subset text prompts (~1.2G) and image prompts (~0.2G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Subset_Text_Embedding.parquet", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Subset_Image_Embedding.parquet", repo_type="dataset")
```

```python
# Embeddings for 10k TIP-Eval text prompts (~0.1G) and image prompts (~0.02G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Eval_Text_Embedding.parquet", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Eval_Image_Embedding.parquet", repo_type="dataset")
```

## Download uncompressed image prompts

```python
# Full uncompressed image prompts: ~1T
from huggingface_hub import hf_hub_download
for i in range(1,52):
    hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="image_prompt_tar/image_prompt_%d.tar"%i, repo_type="dataset")
```

```python
# 100k subset uncompressed image prompts: ~69.6G
from huggingface_hub import hf_hub_download
for i in range(1,3):
    hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="sub_image_prompt_tar/sub_image_prompt_%d.tar"%i, repo_type="dataset")
```

```python
# 10k TIP-Eval uncompressed image prompts: ~6.5G
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_image_prompt_tar/eval_image_prompt.tar", repo_type="dataset")
```

## Download generated videos

```python
# Full videos generated by Pika: ~1T
from huggingface_hub import hf_hub_download
for i in range(1,52):
    hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="pika_videos_tar/pika_videos_%d.tar"%i, repo_type="dataset")
```

```python
# 100k subset videos generated by Pika (~57.6G), Stable Video Diffusion (~38.9G), Open-Sora (~47.2G), I2VGen-XL (~54.4G), and CogVideoX-5B (~xxG)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_1.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_2.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/svd_videos_subset.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/opensora_videos_subset.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_1.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_2.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/cog_videos_subset.tar", repo_type="dataset")
```

```python
# 10k TIP-Eval videos generated by Pika (~5.8G), Stable Video Diffusion (~3.9G), Open-Sora (~4.7G), I2VGen-XL (~5.4G), and CogVideoX-5B (~xxG)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/pika_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/svd_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/opensora_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/i2vgenxl_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/cog_videos_eval.tar", repo_type="dataset")
```

# Comparison with VidProM and DiffusionDB
<p align="center">
  <img src="https://huggingface.co/datasets/WenhaoWang/TIP-I2V/resolve/main/assets/table.png" width="1000">
</p>
<p align="center">
  <img src="https://huggingface.co/datasets/WenhaoWang/TIP-I2V/resolve/main/assets/comparison.png" width="1000">
</p>

Click the [WizMap (TIP-I2V VS VidProM)](https://poloclub.github.io/wizmap/?dataURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FPublic%2Fresolve%2Fmain%2Fdata_tip-i2v_vidprom.ndjson&gridURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FPublic%2Fresolve%2Fmain%2Fgrid_tip-i2v_vidprom.json) and [WizMap (TIP-I2V VS DiffusionDB)](https://poloclub.github.io/wizmap/?dataURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FPublic%2Fresolve%2Fmain%2Fdata_tip-i2v_diffusiondb.ndjson&gridURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FPublic%2Fresolve%2Fmain%2Fgrid_tip-i2v_diffusiondb.json)
(wait for 5 seconds) for an interactive visualization of our 1.70 million prompts.

# Curators
TIP-I2V is created by [Wenhao Wang](https://wangwenhao0716.github.io/) and Professor [Yi Yang](https://scholar.google.com/citations?user=RMSuNFwAAAAJ&hl=zh-CN).

# License

The prompts and videos in our TIP-I2V are licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en). 


# Citation
```
@article{wang2024tipi2v,
  title={TIP-I2V: A Million-Scale Real Prompt-Gallery Dataset for Image-to-Video Diffusion Models},
  author={Wang, Wenhao and Yang, Yi},
  booktitle={arXiv preprint arXiv:2410.xxxxx},
  year={2024}
}
```

# Contact

If you have any questions, feel free to contact Wenhao Wang (wangwenhao0716@gmail.com).