Datasets:
File size: 2,770 Bytes
b59a256 21a70db b59a256 21a70db b59a256 21a70db b59a256 21a70db b59a256 21a70db b59a256 21a70db b59a256 21a70db b59a256 21a70db b59a256 21a70db b59a256 21a70db b59a256 21a70db b59a256 21a70db b59a256 21a70db b59a256 21a70db b59a256 21a70db b59a256 21a70db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
annotations_creators: []
language: en
license: other
size_categories:
- n<1K
task_categories:
- image-to-image
task_ids: []
pretty_name: Set5
tags:
- fiftyone
- image
- superresolution
dataset_summary: >
![image/png](dataset_preview.gif)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 135
samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/Set5")
# Launch the App
session = fo.launch_app(dataset)
```
---
# Dataset Card for Set5
<!-- Provide a quick summary of the dataset. -->
![image/png](dataset_preview.gif)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 135 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/Set5")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
The Set5 dataset is a dataset consisting of 5 images (“baby”, “bird”, “butterfly”, “head”, “woman”) commonly used for testing performance of Image Super-Resolution models.
- **Curated by:** Bevilacqua, Marco and Roumy, Antoine and Guillemot, Christine and Alberi-Morel, Marie-Line
- **Language(s) (NLP):** en
- **License:** other
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://github.com/ChaofWang/Awesome-Super-Resolution/blob/master/dataset.md
- **Paper:** [Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding](https://people.rennes.inria.fr/Aline.Roumy/publi/12bmvc_Bevilacqua_lowComplexitySR.pdf)
- **Homepage:** https://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html
## Uses
Super-resolution
## Dataset Creation
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```bibtex
@inproceedings{bevilacqua2012low,
title={Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding},
author={Bevilacqua, Marco and Roumy, Antoine and Guillemot, Christine and Alberi-Morel, Marie-Line},
booktitle={Proceedings of the British Machine Vision Conference (BMVC)},
year={2012}
}
```
## Dataset Card Author
[Jacob Marks](https://huggingface.co/jamarks)
|