File size: 2,770 Bytes
b59a256
 
 
 
 
 
21a70db
 
b59a256
 
 
 
 
21a70db
 
b59a256
 
 
 
 
 
 
21a70db
 
b59a256
 
 
 
 
21a70db
b59a256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21a70db
b59a256
21a70db
b59a256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21a70db
b59a256
 
 
 
 
 
 
 
 
21a70db
b59a256
 
21a70db
b59a256
 
 
21a70db
b59a256
 
 
21a70db
 
 
b59a256
 
 
21a70db
b59a256
 
 
 
 
21a70db
b59a256
 
 
 
 
21a70db
 
 
 
 
 
 
 
b59a256
 
21a70db
b59a256
21a70db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
annotations_creators: []
language: en
license: other
size_categories:
- n<1K
task_categories:
- image-to-image
task_ids: []
pretty_name: Set5
tags:
- fiftyone
- image
- superresolution
dataset_summary: >



  ![image/png](dataset_preview.gif)



  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 135
  samples.


  ## Installation


  If you haven't already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  import fiftyone.utils.huggingface as fouh


  # Load the dataset

  # Note: other available arguments include 'max_samples', etc

  dataset = fouh.load_from_hub("Voxel51/Set5")


  # Launch the App

  session = fo.launch_app(dataset)

  ```
---

# Dataset Card for Set5

<!-- Provide a quick summary of the dataset. -->




![image/png](dataset_preview.gif)


This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 135 samples.

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh

# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/Set5")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Details

### Dataset Description
The Set5 dataset is a dataset consisting of 5 images (“baby”, “bird”, “butterfly”, “head”, “woman”) commonly used for testing performance of Image Super-Resolution models.


- **Curated by:** Bevilacqua, Marco and Roumy, Antoine and Guillemot, Christine and Alberi-Morel, Marie-Line
- **Language(s) (NLP):** en
- **License:** other

### Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Repository:** https://github.com/ChaofWang/Awesome-Super-Resolution/blob/master/dataset.md
- **Paper:** [Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding](https://people.rennes.inria.fr/Aline.Roumy/publi/12bmvc_Bevilacqua_lowComplexitySR.pdf)
- **Homepage:** https://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html

## Uses

Super-resolution


## Dataset Creation


## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```bibtex
@inproceedings{bevilacqua2012low,
  title={Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding},
  author={Bevilacqua, Marco and Roumy, Antoine and Guillemot, Christine and Alberi-Morel, Marie-Line},
  booktitle={Proceedings of the British Machine Vision Conference (BMVC)},
  year={2012}
}
```


## Dataset Card Author

[Jacob Marks](https://huggingface.co/jamarks)