Datasets:
Tasks:
Object Detection
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
10K - 100K
ArXiv:
File size: 3,386 Bytes
3602bbc 0376f69 3602bbc ba1c94e 3602bbc 0376f69 3602bbc 5df1e6f 3602bbc 0376f69 5df1e6f 3602bbc 0376f69 3602bbc 0376f69 3602bbc 0376f69 3602bbc 0376f69 5df1e6f 0376f69 5df1e6f 0376f69 5df1e6f 0376f69 3602bbc 5df1e6f 3602bbc 0376f69 3602bbc 0376f69 3602bbc 0376f69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
---
annotations_creators: []
language: en
size_categories:
- 10K<n<100K
task_categories:
- object-detection
task_ids: []
pretty_name: homework_dataset_train
tags:
- fiftyone
- image
- object-detection
dataset_summary: '
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 18287 samples.
## Installation
If you haven''t already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include ''max_samples'', etc
dataset = fouh.load_from_hub("Voxel51/Coursera_homework_dataset_train")
# Launch the App
session = fo.launch_app(dataset)
```
'
---
# Dataset Card for Homework Training Set for Coursera MOOC - Hands Data Centric Visual AI
This dataset is the **training dataset for the homework assignments** of the Hands-on Data Centric AI Coursera course.
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 18287 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/Coursera_homework_dataset_train")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
This dataset is a modified subset of the [LVIS dataset](https://www.lvisdataset.org/).
The dataset here only contains detections, some of which have been artificially perturbed and altered to demonstrate data centric AI techniques and methodologies for the course.
This dataset has the following labels:
- 'bolt'
- 'knob'
- 'tag'
- 'button'
- 'bottle_cap'
- 'belt'
- 'strap'
- 'necktie'
- 'shirt'
- 'sweater'
- 'streetlight'
- 'pole'
- 'reflector'
- 'headlight'
- 'taillight'
- 'traffic_light'
- 'rearview_mirror'
### Dataset Sources
- **Repository:** https://www.lvisdataset.org/
- **Paper:** https://arxiv.org/abs/1908.03195
## Uses
The labels in this dataset have been perturbed to illustrate data centric AI techniques for the Hands-on Data Centric AI Coursera MOOC.
## Dataset Structure
Each image in the dataset comes with detailed annotations in FiftyOne detection format. A typical annotation looks like this:
```python
<Detection: {
'id': '66a2f24cce2f9d11d98d3a21',
'attributes': {},
'tags': [],
'label': 'shirt',
'bounding_box': [
0.25414,
0.35845238095238097,
0.041960000000000004,
0.051011904761904765,
],
'mask': None,
'confidence': None,
'index': None,
}>
```
## Dataset Creation
### Curation Rationale
The selected labels for this dataset is because these objects can be confusing to a model. Thus, making them a great choice for demonstrating data centric AI techniques.
### Source Data
This is a subset of the [LVIS dataset.](https://www.lvisdataset.org/)
## Citation
**BibTeX:**
```bibtex
@inproceedings{gupta2019lvis,
title={{LVIS}: A Dataset for Large Vocabulary Instance Segmentation},
author={Gupta, Agrim and Dollar, Piotr and Girshick, Ross},
booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition},
year={2019}
}
```
|