File size: 3,061 Bytes
4427b79
 
 
 
 
 
b593ea7
 
 
4427b79
 
 
 
 
b593ea7
 
4427b79
 
 
 
 
 
 
b593ea7
 
4427b79
 
 
 
 
b593ea7
4427b79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b593ea7
4427b79
b593ea7
4427b79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b593ea7
4427b79
 
 
 
 
 
 
 
 
 
b593ea7
4427b79
 
b593ea7
4427b79
 
 
 
 
 
 
 
b593ea7
 
4427b79
b593ea7
4427b79
b593ea7
4427b79
 
 
 
 
b593ea7
4427b79
 
b593ea7
4427b79
 
 
b593ea7
 
 
 
 
 
 
 
4427b79
 
b593ea7
4427b79
b593ea7
4427b79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
annotations_creators: []
language: en
license: apache-2.0
size_categories:
- 1K<n<10K
task_categories:
- image-feature-extraction
- image-to-3d
task_ids: []
pretty_name: COIL-100
tags:
- fiftyone
- image
- clustering
dataset_summary: >



  ![image/png](dataset_preview.gif)



  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 7200
  samples.


  ## Installation


  If you haven't already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  import fiftyone.utils.huggingface as fouh


  # Load the dataset

  # Note: other available arguments include 'max_samples', etc

  dataset = fouh.load_from_hub("Voxel51/COIL-100")


  # Launch the App

  session = fo.launch_app(dataset)

  ```
---

# Dataset Card for COIL-100


![image/png](dataset_preview.gif)


This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 7200 samples.

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh

# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/COIL-100")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Details

### Dataset Description

There are 7,200 images of 100 objects. Each object was turned on a turnable through 360 degrees to vary object pose with respect to a fixed color camera. Images of the objects were taken at pose intervals of 5 degrees. This corresponds to 72 poses per object. There images were then size normalized. Objects have a wide variety of complex geometric and reflectance characteristics.


- **Curated by:** Center for Research on Intelligent Systems at the Department of Computer Science, Columbia University
- **Language(s) (NLP):** en
- **License:** apache-2.0

### Dataset Sources [optional]

<!-- Provide the basic links for the dataset. -->


- **Paper:** https://www1.cs.columbia.edu/CAVE/publications/pdfs/Nene_TR96_2.pdf
- **Homepage:** https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

## Uses

This dataset is intended for non-commercial research purposes only. 



#### Data Collection and Processing

COIL-100 was collected by the Center for Research on Intelligent Systems at the Department of Computer Science, Columbia University. The database contains color images of 100 objects. The objects were placed on a motorized turntable against a black background and images were taken at pose internals of 5 degrees. This dataset was used in a real-time 100 object recognition system whereby a system sensor could identify the object and display its angular pose.


## Citation

**BibTeX:**

```bibtex
@article{nene1996columbia,
  title={Columbia object image library (coil-100)},
  author={Nene, Sameer A and Nayar, Shree K and Murase, Hiroshi},
  year={1996},
  publisher={Technical report CUCS-006-96}
}
```


## Dataset Card Authors

[Jacob Marks](https://huggingface.co/jamarks)