File size: 4,599 Bytes
ad97abc de80b2a ad97abc 9ced8b5 ad97abc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# Pretrained diffusers model path.
pretrained_model_path: "ckpts/stable-video-diffusion-img2vid"
# The folder where your training outputs will be placed.
output_dir: "./outputs"
seed: 23
num_steps: 25
# Xformers must be installed for best memory savings and performance (< Pytorch 2.0)
enable_xformers_memory_efficient_attention: True
# Use scaled dot product attention (Only available with >= Torch 2.0)
enable_torch_2_attn: True
use_sarp: true
use_motion_lora: true
train_motion_lora_only: false
retrain_motion_lora: false
use_inversed_latents: true
use_attention_matching: true
use_consistency_attention_control: true
dtype: fp16
visualize_attention_store: false
visualize_attention_store_steps: [0, 5, 10, 15, 20, 24]
save_last_frames: True
load_from_last_frames_latents:
# data_params
data_params:
video_path: "../datasets/svdedit/item3/source.mp4"
keyframe_paths:
- "../datasets/svdedit/item3/cyberpunk.png"
- "../datasets/svdedit/item3/hat.png"
- "../datasets/svdedit/item3/shinkai.png"
- "../datasets/svdedit/item3/tshirt.png"
start_t: 0
end_t: -1
sample_fps: 7
chunk_size: 16
overlay_size: 1
normalize: true
output_fps: 7
save_sampled_frame: true
output_res: [576, 1024]
pad_to_fit: false
begin_clip_id: 0
end_clip_id: 2
train_motion_lora_params:
cache_latents: true
cached_latent_dir: null #/path/to/cached_latents
lora_rank: 32
# Use LoRA for the UNET model.
use_unet_lora: True
# LoRA Dropout. This parameter adds the probability of randomly zeros out elements. Helps prevent overfitting.
# See: https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
lora_unet_dropout: 0.1
# The only time you want this off is if you're doing full LoRA training.
save_pretrained_model: False
# Learning rate for AdamW
learning_rate: 5e-4
# Weight decay. Higher = more regularization. Lower = closer to dataset.
adam_weight_decay: 1e-2
# Maximum number of train steps. Model is saved after training.
max_train_steps: 250
# Saves a model every nth step.
checkpointing_steps: 250
# How many steps to do for validation if sample_preview is enabled.
validation_steps: 300
# Whether or not we want to use mixed precision with accelerate
mixed_precision: "fp16"
# Trades VRAM usage for speed. You lose roughly 20% of training speed, but save a lot of VRAM.
# If you need to save more VRAM, it can also be enabled for the text encoder, but reduces speed x2.
gradient_checkpointing: True
image_encoder_gradient_checkpointing: True
train_data:
# The width and height in which you want your training data to be resized to.
width: 896
height: 512
# This will find the closest aspect ratio to your input width and height.
# For example, 512x512 width and height with a video of resolution 1280x720 will be resized to 512x256
use_data_aug: ~ #"controlnet"
pad_to_fit: false
validation_data:
# Whether or not to sample preview during training (Requires more VRAM).
sample_preview: True
# The number of frames to sample during validation.
num_frames: 14
# Height and width of validation sample.
width: 1024
height: 576
pad_to_fit: false
# scale of spatial LoRAs, default is 0
spatial_scale: 0
# scale of noise prior, i.e. the scale of inversion noises
noise_prior:
#- 0.0
- 1.0
sarp_params:
sarp_noise_scale: 0.005
attention_matching_params:
best_checkpoint_index: 250
lora_scale: 1.0
# lora path
lora_dir: "./cache/item3/train_motion_lora/"
max_guidance_scale: 2.0
disk_store: True
load_attention_store: "./cache/item3/attention_store"
load_consistency_attention_store: "./cache/item3/consistency_attention_store"
registered_modules:
BasicTransformerBlock:
- "attn1"
#- "attn2"
TemporalBasicTransformerBlock:
- "attn1"
#- "attn2"
control_mode:
spatial_self: "masked_copy"
temporal_self: "copy_v2"
cross_replace_steps: 0.0
temporal_self_replace_steps: 1.0
spatial_self_replace_steps: 1.0
spatial_attention_chunk_size: 1
params:
edit0:
temporal_step_thr: [0.4, 0.5]
mask_thr: [0.35, 0.35]
edit1:
temporal_step_thr: [0.5, 0.8]
mask_thr: [0.35, 0.35]
edit2:
temporal_step_thr: [0.5, 0.8]
mask_thr: [0.35, 0.35]
edit3:
temporal_step_thr: [0.5, 0.8]
mask_thr: [0.35, 0.35]
long_video_params:
mode: "skip-interval"
registered_modules:
BasicTransformerBlock:
#- "attn1"
#- "attn2"
TemporalBasicTransformerBlock:
- "attn1"
#- "attn2"
|