Datasets:
File size: 10,925 Bytes
59befff 134f75e 49934c7 134f75e 59befff a806618 59befff f101ff0 a3cbb0d fc74400 31c0d64 fc74400 31c0d64 fc74400 9962ca8 fc74400 9962ca8 fc74400 30c94e3 1c598b6 59befff a806618 59befff 124863c 59befff 124863c 59befff da62ebe 59befff a806618 75186d2 59befff a806618 59befff a806618 59befff a806618 59befff a806618 59befff a806618 f101ff0 59befff a806618 59befff 75186d2 59befff a806618 59befff a806618 da62ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
---
annotations_creators:
- found
language_creators:
- expert-generated
- found
language:
- en
- zh
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- closed-domain-qa
pretty_name: MedDialog
paperswithcode_id: meddialog
dataset_info:
- config_name: en
features:
- name: file_name
dtype: string
- name: dialogue_id
dtype: int32
- name: dialogue_url
dtype: string
- name: dialogue_turns
sequence:
- name: speaker
dtype:
class_label:
names:
'0': Patient
'1': Doctor
- name: utterance
dtype: string
splits:
- name: train
num_bytes: 290274759
num_examples: 229674
download_size: 0
dataset_size: 290274759
- config_name: zh
features:
- name: file_name
dtype: string
- name: dialogue_id
dtype: int32
- name: dialogue_url
dtype: string
- name: dialogue_turns
sequence:
- name: speaker
dtype:
class_label:
names:
'0': 病人
'1': 医生
- name: utterance
dtype: string
splits:
- name: train
num_bytes: 1092063621
num_examples: 1921127
download_size: 0
dataset_size: 1092063621
- config_name: processed.en
features:
- name: description
dtype: string
- name: utterances
sequence: string
splits:
- name: train
num_bytes: 370745
num_examples: 482
- name: validation
num_bytes: 52145
num_examples: 60
- name: test
num_bytes: 46514
num_examples: 61
download_size: 524214
dataset_size: 469404
- config_name: processed.zh
features:
- name: utterances
sequence: string
splits:
- name: train
num_bytes: 1571262099
num_examples: 2725989
- name: validation
num_bytes: 197117565
num_examples: 340748
- name: test
num_bytes: 196526738
num_examples: 340754
download_size: 2082354155
dataset_size: 1964906402
config_names:
- en
- zh
viewer: false
---
# Dataset Card for MedDialog
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** https://github.com/UCSD-AI4H/Medical-Dialogue-System
- **Paper:** [MedDialog: Two Large-scale Medical Dialogue Datasets](https://arxiv.org/abs/2004.03329)
- **Point of Contact:** [Pengtao Xie](mailto:pengtaoxie2008@gmail.com)
### Dataset Summary
The MedDialog dataset (Chinese) contains conversations (in Chinese) between doctors and patients. It has 1.1 million dialogues and 4 million utterances. The data is continuously growing and more dialogues will be added. The raw dialogues are from haodf.com. All copyrights of the data belong to haodf.com.
The MedDialog dataset (English) contains conversations (in English) between doctors and patients. It has 0.26 million dialogues. The data is continuously growing and more dialogues will be added. The raw dialogues are from healthcaremagic.com and icliniq.com. All copyrights of the data belong to healthcaremagic.com and icliniq.com.
Directions for using the pre-trained model using BERT using PyTorch is available in the Homepage.
### Supported Tasks and Leaderboards
Closed domain qa
### Languages
Monolingual. The datasets are in English (EN) and Chinese (ZH)
## Dataset Structure
### Data Instances
There are 4 configurations:
- Raw data:
- en
- zh
- Processed data:
- processed.en
- processed.zh
#### en
Each consultation consists of the below:
- ID
- URL
- Description of patient’s medical condition
- Dialogue
The dataset is built from [icliniq.com](https://www.icliniq.com/), [healthcaremagic.com](https://www.healthcaremagic.com/), [healthtap.com](https://www.healthtap.com/) and all copyrights of the data belong to these websites.
#### zh
Each consultation consists of the below:
- ID
- URL
- Description of patient’s medical condition
- Dialogue
- (Optional) Diagnosis and suggestions.
The dataset is built from [Haodf.com](https://www.haodf.com/) and all copyrights of the data belong to [Haodf.com](https://www.haodf.com/).
One example for chinese is
```
{
{'dialogue_id': 2,
'dialogue_turns': [{'speaker': '病人',
'utterance': '孩子哭闹时,鸡鸡旁边会肿起,情绪平静时肿块会消失,去一个私人诊所看过,说是疝气.如果确定是疝气,是不是一定要手术治疗?我孩子只有1岁10月,自愈的可能性大吗?如果一定要手术,这么小的孩子风险大吗?术后的恢复困难吗?谢谢.'},
{'speaker': '医生', 'utterance': '南方医的B超说得不清楚,可能是鞘膜积液,可到我医院复查一个B超。'}],
'dialogue_url': 'https://www.haodf.com/doctorteam/flow_team_6477251152.htm',
'file_name': '2020.txt'},
}
```
#### processed.en
```
{
'description': 'throat a bit sore and want to get a good imune booster, especially in light of the virus. please advise. have not been in contact with nyone with the virus.',
'utterances': [
'patient: throat a bit sore and want to get a good imune booster, especially in light of the virus. please advise. have not been in contact with nyone with the virus.',
"doctor: during this pandemic. throat pain can be from a strep throat infection (antibiotics needed), a cold or influenza or other virus, or from some other cause such as allergies or irritants. usually, a person sees the doctor (call first) if the sore throat is bothersome, recurrent, or doesn't go away quickly. covid-19 infections tend to have cough, whereas strep throat usually lacks cough but has more throat pain. (3/21/20)"
]
}
```
#### processed.zh
```
{
'utterances': [
'病人:强制性脊柱炎,晚上睡觉翻身时腰骶骨区域疼痛,其他身体任何部位均不疼痛。',
'医生:应该没有问题,但最好把图像上传看看。'
]
}
```
### Data Fields
For generating the QA only the below fields have been considered:
- ID : Consultatation Identifier (restarts for each file)
- URL: The url link of the extracted conversation
- Dialogue : The conversation between the doctor and the patient.
These are arranged as below in the prepared dataset. Each item will be represented with these parameters.
- "file_name": string - signifies the file from which the conversation was extracted
- "dialogue_id": int32 - the dialogue id
- "dialogue_url": string - url of the conversation
- "dialogue_turns": datasets.Sequence - sequence of dialogues between patient and the doctor.Consists ClassLabel(names=["病人", "医生"]), and "utterance"(string) for each turn. (ClassLable(names=["Patient", "Doctor"]) for english)
#### processed.en
- `description` (str): Description of the dialog.
- `utterances` (list of str): Dialog utterances between patient and doctor.
#### processed.zh
- `utterances` (list of str): Dialog utterances between patient and doctor.
### Data Splits
There are no data splits on the original raw data. The "train" split for each language contains:
- en: 229674 examples
- zh: 1921127 examples
For processed configurations, data is split into train, validation and test, with the following number of examples:
| | train | validation | test |
|--------------|--------:|-----------:|-------:|
| processed.en | 482 | 60 | 61 |
| processed.zh | 2725989 | 340748 | 340754 |
## Dataset Creation
### Curation Rationale
Medical dialogue systems are promising in assisting in telemedicine to increase access to healthcare services, improve the quality of patient care, and reduce medical costs.
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The authors claim that:
- They scraped the data from the following websites:
- MedDialog-EN: data was crawled from https://www.icliniq.com/ and https://www.healthcaremagic.com/
- MedDialog-CN: data was crawled from https://www.haodf.com/
- All copyrights of the data belong to the corresponding websites
The [terms and conditions](https://www.icliniq.com/p/terms) (last updated on: 11th April 2022) of www.icliniq.com website state:
> No person (including a User, Doctor, Alternative Medicine Practitioner, or Wellness Professional) shall copy, transfer, download, republish, sell, duplicate, or "scrape", for commercial or any other purpose whatsoever, the contents or information made available on the Platform including Directory Listing Services, academic articles, and queries, in whole or in part, in any medium whatsoever.
The [terms and conditions](https://www.healthcaremagic.com/tc) (last updated: August 17, 2012) of www.healthcaremagic.com website stipulate:
> You are prohibited from republishing, selling, duplicating, or "scraping" for commercial or any other purpose whatsoever any of the data or other information contained therein, in whole or in part, in any medium whatsoever.
### Citation Information
```
@article{chen2020meddiag,
title={MedDialog: a large-scale medical dialogue dataset},
author={Chen, Shu and Ju, Zeqian and Dong, Xiangyu and Fang, Hongchao and Wang, Sicheng and Yang, Yue and Zeng, Jiaqi and Zhang, Ruisi and Zhang, Ruoyu and Zhou, Meng and Zhu, Penghui and Xie, Pengtao},
journal={arXiv preprint arXiv:2004.03329},
year={2020}
}
```
### Contributions
Thanks to [@vrindaprabhu](https://github.com/vrindaprabhu) for adding this dataset. |