Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 14,704 Bytes
7158a4f be743f1 7158a4f be743f1 bd16012 7158a4f 2717994 1e34ab3 e2306e9 3483241 2101a45 3483241 2101a45 3483241 2101a45 3483241 2101a45 3483241 7158a4f 2717994 7158a4f 2717994 7158a4f 2f7c340 7158a4f 3483241 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
- open-domain-qa
paperswithcode_id: adversarialqa
pretty_name: adversarialQA
train-eval-index:
- config: adversarialQA
task: question-answering
task_id: extractive_question_answering
splits:
train_split: train
eval_split: validation
col_mapping:
question: question
context: context
answers:
text: text
answer_start: answer_start
metrics:
- type: squad
name: SQuAD
dataset_info:
- config_name: adversarialQA
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
- name: metadata
struct:
- name: split
dtype: string
- name: model_in_the_loop
dtype: string
splits:
- name: train
num_bytes: 27858794
num_examples: 30000
- name: validation
num_bytes: 2757128
num_examples: 3000
- name: test
num_bytes: 2919643
num_examples: 3000
download_size: 9018914
dataset_size: 33535565
- config_name: dbidaf
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
- name: metadata
struct:
- name: split
dtype: string
- name: model_in_the_loop
dtype: string
splits:
- name: train
num_bytes: 9282518
num_examples: 10000
- name: validation
num_bytes: 917943
num_examples: 1000
- name: test
num_bytes: 947111
num_examples: 1000
download_size: 9018914
dataset_size: 11147572
- config_name: dbert
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
- name: metadata
struct:
- name: split
dtype: string
- name: model_in_the_loop
dtype: string
splits:
- name: train
num_bytes: 9345557
num_examples: 10000
- name: validation
num_bytes: 918192
num_examples: 1000
- name: test
num_bytes: 971454
num_examples: 1000
download_size: 9018914
dataset_size: 11235203
- config_name: droberta
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
- name: metadata
struct:
- name: split
dtype: string
- name: model_in_the_loop
dtype: string
splits:
- name: train
num_bytes: 9270719
num_examples: 10000
- name: validation
num_bytes: 925065
num_examples: 1000
- name: test
num_bytes: 1005406
num_examples: 1000
download_size: 9018914
dataset_size: 11201190
---
# Dataset Card for adversarialQA
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [adversarialQA homepage](https://adversarialqa.github.io/)
- **Repository:** [adversarialQA repository](https://github.com/maxbartolo/adversarialQA)
- **Paper:** [Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension](https://arxiv.org/abs/2002.00293)
- **Leaderboard:** [Dynabench QA Round 1 Leaderboard](https://dynabench.org/tasks/2#overall)
- **Point of Contact:** [Max Bartolo](max.bartolo@ucl.ac.uk)
### Dataset Summary
We have created three new Reading Comprehension datasets constructed using an adversarial model-in-the-loop.
We use three different models; BiDAF (Seo et al., 2016), BERTLarge (Devlin et al., 2018), and RoBERTaLarge (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.
The adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging. The three AdversarialQA round 1 datasets provide a training and evaluation resource for such methods.
### Supported Tasks and Leaderboards
`extractive-qa`: The dataset can be used to train a model for Extractive Question Answering, which consists in selecting the answer to a question from a passage. Success on this task is typically measured by achieving a high word-overlap [F1 score](https://huggingface.co/metrics/f1). The [RoBERTa-Large](https://huggingface.co/roberta-large) model trained on all the data combined with [SQuAD](https://arxiv.org/abs/1606.05250) currently achieves 64.35% F1. This task has an active leaderboard and is available as round 1 of the QA task on [Dynabench](https://dynabench.org/tasks/2#overall) and ranks models based on F1 score.
### Languages
The text in the dataset is in English. The associated BCP-47 code is `en`.
## Dataset Structure
### Data Instances
Data is provided in the same format as SQuAD 1.1. An example is shown below:
```
{
"data": [
{
"title": "Oxygen",
"paragraphs": [
{
"context": "Among the most important classes of organic compounds that contain oxygen are (where \"R\" is an organic group): alcohols (R-OH); ethers (R-O-R); ketones (R-CO-R); aldehydes (R-CO-H); carboxylic acids (R-COOH); esters (R-COO-R); acid anhydrides (R-CO-O-CO-R); and amides (R-C(O)-NR2). There are many important organic solvents that contain oxygen, including: acetone, methanol, ethanol, isopropanol, furan, THF, diethyl ether, dioxane, ethyl acetate, DMF, DMSO, acetic acid, and formic acid. Acetone ((CH3)2CO) and phenol (C6H5OH) are used as feeder materials in the synthesis of many different substances. Other important organic compounds that contain oxygen are: glycerol, formaldehyde, glutaraldehyde, citric acid, acetic anhydride, and acetamide. Epoxides are ethers in which the oxygen atom is part of a ring of three atoms.",
"qas": [
{
"id": "22bbe104aa72aa9b511dd53237deb11afa14d6e3",
"question": "In addition to having oxygen, what do alcohols, ethers and esters have in common, according to the article?",
"answers": [
{
"answer_start": 36,
"text": "organic compounds"
}
]
},
{
"id": "4240a8e708c703796347a3702cf1463eed05584a",
"question": "What letter does the abbreviation for acid anhydrides both begin and end in?",
"answers": [
{
"answer_start": 244,
"text": "R"
}
]
},
{
"id": "0681a0a5ec852ec6920d6a30f7ef65dced493366",
"question": "Which of the organic compounds, in the article, contains nitrogen?",
"answers": [
{
"answer_start": 262,
"text": "amides"
}
]
},
{
"id": "2990efe1a56ccf81938fa5e18104f7d3803069fb",
"question": "Which of the important classes of organic compounds, in the article, has a number in its abbreviation?",
"answers": [
{
"answer_start": 262,
"text": "amides"
}
]
}
]
}
]
}
]
}
```
### Data Fields
- title: the title of the Wikipedia page from which the context is sourced
- context: the context/passage
- id: a string identifier for each question
- answers: a list of all provided answers (one per question in our case, but multiple may exist in SQuAD) with an `answer_start` field which is the character index of the start of the answer span, and a `text` field which is the answer text.
Note that no answers are provided in the test set. Indeed, this dataset is part of the DynaBench benchmark, for which you can submit your predictions on the [website](https://dynabench.org/tasks/2#1).
### Data Splits
The dataset is composed of three different datasets constructed using different models in the loop: BiDAF, BERT-Large, and RoBERTa-Large. Each of these has 10,000 training examples, 1,000 validation examples, and 1,000 test examples for a total of 30,000/3,000/3,000 train/validation/test examples.
## Dataset Creation
### Curation Rationale
This dataset was collected to provide a more challenging and diverse Reading Comprehension dataset to state-of-the-art models.
### Source Data
#### Initial Data Collection and Normalization
The source passages are from Wikipedia and are the same as those used in [SQuAD v1.1](https://arxiv.org/abs/1606.05250).
#### Who are the source language producers?
The source language produces are Wikipedia editors for the passages, and human annotators on Mechanical Turk for the questions.
### Annotations
#### Annotation process
The dataset is collected through an adversarial human annotation process which pairs a human annotator and a reading comprehension model in an interactive setting. The human is presented with a passage for which they write a question and highlight the correct answer. The model then tries to answer the question, and, if it fails to answer correctly, the human wins. Otherwise, the human modifies or re-writes their question until the successfully fool the model.
#### Who are the annotators?
The annotators are from Amazon Mechanical Turk, geographically restricted the the USA, UK and Canada, having previously successfully completed at least 1,000 HITs, and having a HIT approval rate greater than 98%. Crowdworkers undergo intensive training and qualification prior to annotation.
### Personal and Sensitive Information
No annotator identifying details are provided.
## Considerations for Using the Data
### Social Impact of Dataset
The purpose of this dataset is to help develop better question answering systems.
A system that succeeds at the supported task would be able to provide an accurate extractive answer from a short passage. This dataset is to be seen as a test bed for questions which contemporary state-of-the-art models struggle to answer correctly, thus often requiring more complex comprehension abilities than say detecting phrases explicitly mentioned in the passage with high overlap to the question.
It should be noted, however, that the the source passages are both domain-restricted and linguistically specific, and that provided questions and answers do not constitute any particular social application.
### Discussion of Biases
The dataset may exhibit various biases in terms of the source passage selection, annotated questions and answers, as well as algorithmic biases resulting from the adversarial annotation protocol.
### Other Known Limitations
N/a
## Additional Information
### Dataset Curators
This dataset was initially created by Max Bartolo, Alastair Roberts, Johannes Welbl, Sebastian Riedel, and Pontus Stenetorp, during work carried out at University College London (UCL).
### Licensing Information
This dataset is distributed under [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/).
### Citation Information
```
@article{bartolo2020beat,
author = {Bartolo, Max and Roberts, Alastair and Welbl, Johannes and Riedel, Sebastian and Stenetorp, Pontus},
title = {Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension},
journal = {Transactions of the Association for Computational Linguistics},
volume = {8},
number = {},
pages = {662-678},
year = {2020},
doi = {10.1162/tacl\_a\_00338},
URL = { https://doi.org/10.1162/tacl_a_00338 },
eprint = { https://doi.org/10.1162/tacl_a_00338 },
abstract = { Innovations in annotation methodology have been a catalyst for Reading Comprehension (RC) datasets and models. One recent trend to challenge current RC models is to involve a model in the annotation process: Humans create questions adversarially, such that the model fails to answer them correctly. In this work we investigate this annotation methodology and apply it in three different settings, collecting a total of 36,000 samples with progressively stronger models in the annotation loop. This allows us to explore questions such as the reproducibility of the adversarial effect, transfer from data collected with varying model-in-the-loop strengths, and generalization to data collected without a model. We find that training on adversarially collected samples leads to strong generalization to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop. Furthermore, we find that stronger models can still learn from datasets collected with substantially weaker models-in-the-loop. When trained on data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on questions that it cannot answer when trained on SQuAD—only marginally lower than when trained on data collected using RoBERTa itself (41.0F1). }
}
```
### Contributions
Thanks to [@maxbartolo](https://github.com/maxbartolo) for adding this dataset. |