File size: 9,028 Bytes
823603f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import xml.etree.ElementTree as ET
import datasets
import pandas as pd
from huggingface_hub import hf_hub_url

logger = datasets.logging.get_logger(__name__)

class LaCourConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(LaCourConfig, self).__init__(**kwargs)


class LaCourDataset(datasets.GeneratorBasedBuilder):
    """
    A class used to represent a Dataset.

    ...

    Attributes
    ----------
    VERSION : datasets.Version
        a version number for the dataset

    BUILDER_CONFIGS : list
        a list of BuilderConfig instances

    Methods
    -------
    _info():
        Returns the dataset information.
    _split_generators(download_manager: datasets.DownloadManager):
        Returns SplitGenerators.
    _generate_examples():
        Yields examples.
    """
    # Version history
    # 0.1.0 initial release
    VERSION = datasets.Version("0.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="transcripts",
            version=VERSION,
            description="transcript dataset based on xml files",
        ),
        datasets.BuilderConfig(
            name="documents",
            version=VERSION,
            description="linked documents associated with the webcast"
        )

    ]

    DEFAULT_CONFIG_NAME = "transcripts"

    def _info(self):
        """
        Returns the dataset information.

        ...

        Returns
        -------
        datasets.DatasetInfo
            a DatasetInfo instance containing information about the dataset
        """
        if self.config.name == "transcripts":
            return datasets.DatasetInfo(
                features=datasets.Features(
                    {
                        "id": datasets.Value("int32"),
                        "webcast_id": datasets.Value("string"),
                        "segment_id": datasets.features.Value("int32"),
                        "speaker_name": datasets.features.Value("string"),
                        "speaker_role": datasets.features.Value("string"),
                        "data": datasets.features.Sequence({
                            "begin": datasets.features.Value("float32"),
                            "end": datasets.features.Value("float32"),
                            "language": datasets.features.Value("string"),
                            "text": datasets.features.Value("string"),
                        })
                    }
                ),
                supervised_keys=None,
            )
        else:
            return datasets.DatasetInfo(
                features=datasets.Features(
                    {
                        "id": datasets.Value("int32"),
                        "webcast_id": datasets.Value("string"),
                        "hearing_title": datasets.Value("string"),
                        "hearing_date": datasets.Value("string"),
                        "hearing_type": datasets.Value("string"),
                        "application_number": datasets.features.Sequence(datasets.Value("string")),
                        "case_id": datasets.Value("string"),
                        "case_name": datasets.Value("string"),
                        "case_url": datasets.Value("string"),
                        "ecli": datasets.Value("string"),
                        "type": datasets.Value("string"),
                        "document_date": datasets.Value("string"),
                        "importance": datasets.Value("int32"),
                        "articles": datasets.features.Sequence(datasets.Value("string")),
                        "respondent_government": datasets.features.Sequence(datasets.Value("string")),
                        "issue": datasets.Value("string"),
                        "strasbourg_caselaw": datasets.Value("string"),
                        "external_sources": datasets.Value("string"),
                        "conclusion": datasets.Value("string"),
                        "separate_opinion": datasets.Value("bool")
                    }
                ),
                supervised_keys=None,
            )


    def _split_generators(self, dl_manager):
        """
        Returns SplitGenerators.

        Parameters
        ----------
        download_manager : datasets.DownloadManager
            a DownloadManager instance

        Returns
        -------
        list
            a list of SplitGenerator instances
        """
        base_url_xml = hf_hub_url("TrustHLT-ECALP/LaCourfinished]", filename="lacourxml.tar.gz", repo_type="dataset")
        base_url_json = hf_hub_url("TrustHLT-ECALP/LaCourfinished]", filename="lacour_linked_documents.json", repo_type="dataset")

        if self.config.name == "transcripts":
            path = dl_manager.download(base_url_xml)
            xmlpath = dl_manager.iter_archive(path)
            return [
                datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": xmlpath}),
                ]
        else:
            jsonpath = dl_manager.download(base_url_json)
            return [
                datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": jsonpath}),
                ]

    def _generate_examples(self, filepaths):
        """
        This method reads the files in the provided transcripts, parses the data, and yields it in a structured format.

        For the configuration "xml", it reads XML files and extracts speaker segments and associated metadata.

        Parameters
        ----------
        filepaths : list
            A list of filepaths to the data files.

        Yields
        ------
        tuple
            A tuple containing an ID and a dictionary with the data. The dictionary keys include 'id' and 'data'.
            'data' is a list of lists, where each inner list contains a key and a value extracted from the data file.
        """
        if self.config.name == "transcripts":
            id_ = 0
            for fpath, file in filepaths:
                logger.info("generating examples from = %s", fpath)
                tree = ET.parse(file)
                root = tree.getroot()
                segment_id = 0
                for speakerSegment in root.findall('SpeakerSegment'):
                    text_segments = []
                    for segment in speakerSegment.findall('Segment'):
                        meta_data = segment.find('meta_data')
                        text_segments.append({                                
                            "begin": meta_data.findtext('TimestampBegin', ''),
                            "end": meta_data.findtext('TimestampEnd', ''),
                            "language": meta_data.findtext('Language', ''),
                            "text": segment.findtext('text', '').strip(),
                        })
                    feature = id_, {
                        "id": id_,
                        "webcast_id": fpath.split('_')[1] + "_" + fpath.split('_')[2].split('.')[0],
                        "segment_id": segment_id,
                        "speaker_role": meta_data.findtext('Role', ''),
                        "speaker_name": meta_data.findtext('Name', ''),
                        "data": text_segments
                    }
                    yield feature
                    id_ += 1
                    segment_id += 1
                    
        elif self.config.name == "documents":
            id_ = 0
            df = pd.read_json(filepaths, orient="index", dtype={"webcast_id": str})
            logger.info("generating examples from = %s", filepaths)
            cols = df.columns.tolist()
            cols.remove('appno')
            # group appnos to avoid duplicates
            df = df.groupby(cols)['appno'].apply(';'.join).reset_index()
            for _, row in df.iterrows():
                feature = id_,{
                    "id": id_,
                    "webcast_id": row["webcast_id"],
                    "hearing_title": row["hearing_title"], 
                    "hearing_date": row["hearing_date"],
                    "hearing_type": row["hearing_type"],
                    "application_number": row["appno"].split(';'),
                    "case_id": row["case_id"],
                    "case_name": row["case_name"],
                    "case_url": row["case_url"],
                    "ecli": row["ecli"],
                    "type": row["type"],
                    "document_date": row["document_date"],
                    "importance": row["importance"],
                    "articles": row["articles"].split(';'),
                    "respondent_government": row["respondent"].split(';'),
                    "issue": row["issue"],
                    "strasbourg_caselaw": row["strasbourg_caselaw"],
                    "external_sources": row["external_sources"],
                    "conclusion": row["conclusion"],
                    "separate_opinion": row["separate_opinion"]
                }
                yield feature
                id_ += 1