File size: 5,430 Bytes
67fa597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a258649
 
 
 
67fa597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from xml.etree import ElementTree as ET

import datasets

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {ripe-strawberries-detection},
author = {TrainingDataPro},
year = {2023}
}
"""

_DESCRIPTION = """\
The dataset consists of photos of strawberries for the identification and recognition of
ripe berries. 
The images are annotated with **bounding boxes** that accurately demarcate the location
of the ripe strawberries within the image.
Each image in the dataset showcases a strawberry plantation, and includes a diverse
range of backgrounds, lighting conditions, and orientations. The photos are captured
from various angles and distances, providing a realistic representation of strawberries.
The dataset can be utilised for enabling advancements in strawberry production, quality
control, and greater precision in agricultural practices.

"""
_NAME = "ripe-strawberries-detection"

_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"

_LICENSE = ""

_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"

_LABELS = ["strawberry"]


class BotoxInjectionsBeforeAndAfter(datasets.GeneratorBasedBuilder):
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("int32"),
                    "name": datasets.Value("string"),
                    "image": datasets.Image(),
                    "mask": datasets.Image(),
                    "width": datasets.Value("uint16"),
                    "height": datasets.Value("uint16"),
                    "shapes": datasets.Sequence(
                        {
                            "label": datasets.ClassLabel(
                                num_classes=len(_LABELS),
                                names=_LABELS,
                            ),
                            "type": datasets.Value("string"),
                            "points": datasets.Sequence(
                                datasets.Sequence(
                                    datasets.Value("float"),
                                ),
                            ),
                            "rotation": datasets.Value("float"),
                            "attributes": datasets.Sequence(
                                {
                                    "name": datasets.Value("string"),
                                    "text": datasets.Value("string"),
                                }
                            ),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        images = dl_manager.download(f"{_DATA}images.tar.gz")
        masks = dl_manager.download(f"{_DATA}boxes.tar.gz")
        annotations = dl_manager.download(f"{_DATA}annotations.xml")
        images = dl_manager.iter_archive(images)
        masks = dl_manager.iter_archive(masks)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": images,
                    "masks": masks,
                    "annotations": annotations,
                },
            ),
        ]

    @staticmethod
    def parse_shape(shape: ET.Element) -> dict:
        label = shape.get("label")
        shape_type = shape.tag
        rotation = shape.get("rotation", 0.0)

        points = None

        if shape_type == "points":
            points = tuple(map(float, shape.get("points").split(",")))

        elif shape_type == "box":
            points = [
                (float(shape.get("xtl")), float(shape.get("ytl"))),
                (float(shape.get("xbr")), float(shape.get("ybr"))),
            ]

        elif shape_type == "polygon":
            points = [
                tuple(map(float, point.split(",")))
                for point in shape.get("points").split(";")
            ]

        attributes = []

        for attr in shape:
            attr_name = attr.get("name")
            attr_text = attr.text
            attributes.append({"name": attr_name, "text": attr_text})

        shape_data = {
            "label": label,
            "type": shape_type,
            "points": points,
            "rotation": rotation,
            "attributes": attributes,
        }

        return shape_data

    def _generate_examples(self, images, masks, annotations):
        tree = ET.parse(annotations)
        root = tree.getroot()

        for idx, (
            (image_path, image),
            (mask_path, mask),
        ) in enumerate(zip(images, masks)):
            image_name = image_path.split("/")[-1]
            img = root.find(f"./image[@name='{image_name}']")

            image_id = img.get("id")
            name = img.get("name")
            width = img.get("width")
            height = img.get("height")
            shapes = [self.parse_shape(shape) for shape in img]

            yield idx, {
                "id": image_id,
                "name": name,
                "image": {"path": image_path, "bytes": image.read()},
                "mask": {"path": mask_path, "bytes": mask.read()},
                "width": width,
                "height": height,
                "shapes": shapes,
            }