File size: 2,933 Bytes
11c0abd 6067c9e 11c0abd 6067c9e 11c0abd 6067c9e 11c0abd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import datasets
import pandas as pd
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {pose_estimation},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset is primarly intended to dentify and predict the positions of major
joints of a human body in an image. It consists of people's photographs with
body part labeled with keypoints.
"""
_NAME = 'pose_estimation'
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = "cc-by-nc-nd-4.0"
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
class PoseEstimation(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(description=_DESCRIPTION,
features=datasets.Features({
'image_id': datasets.Value('uint32'),
'image': datasets.Image(),
'mask': datasets.Image(),
'shapes': datasets.Value('string')
}),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE)
def _split_generators(self, dl_manager):
images = dl_manager.download(f"{_DATA}images.tar.gz")
masks = dl_manager.download(f"{_DATA}masks.tar.gz")
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
images = dl_manager.iter_archive(images)
masks = dl_manager.iter_archive(masks)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"images": images,
"masks": masks,
'annotations': annotations
}),
]
def _generate_examples(self, images, masks, annotations):
annotations_df = pd.read_csv(annotations, sep=',')
for idx, ((image_path, image),
(mask_path, mask)) in enumerate(zip(images, masks)):
file_name = int(image_path.split('.')[0].split('/')[-1])
yield idx, {
'image_id':
annotations_df.loc[annotations_df['image_id'] == file_name]
['image_id'].values[0],
"image": {
"path": image_path,
"bytes": image.read()
},
"mask": {
"path": mask_path,
"bytes": mask.read()
},
'shapes':
annotations_df.loc[annotations_df['image_id'] == file_name]
['shapes'].values[0],
}
|