File size: 97,501 Bytes
a563a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f84d7f2
a563a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f84d7f2
a563a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
task_categories:
- text-classification
- summarization
- other
annotations_creators:
- no-annotation
language_creators:
- expert-generated
languages:
- en
size_categories:
- 1M<n<10M
source_datasets:
- original
licenses:
- cc0-1.0
- cc-by-4.0
- cc-by-sa-4.0
- cc-by-nd-4.0
- cc-by-nc-4.0
- cc-by-nc-sa-4.0
- cc-by-nc-nd-4.0
- other-custom
- unknown

# Dataset Card for PMC Open Access XML

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
- **Repository:** [Needs More Information]
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]

### Dataset Summary

The XML Open Access includes more than 3.4 million journal articles and preprints that are made available under
license terms that allow reuse. 
Not all articles in PMC are available for text mining and other reuse, many have copyright protection, however articles
in the PMC Open Access Subset are made available under Creative Commons or similar licenses that generally allow more
liberal redistribution and reuse than a traditional copyrighted work. 
The PMC Open Access Subset is one part of the PMC Article Datasets

This version takes XML version as source, benefiting from the structured text
to split the articles in parts, naming the introduction, methods, results,
discussion and conclusion, and refers with keywords in the text to external or internal
resources (articles, figures, tables, formulas, boxed-text, quotes, code, footnotes, chemicals, graphics, medias).

The dataset was initially created with relation-extraction tasks in mind, between the references in text and the content of the
references (e.g. for PMID, by joining the refered article abstract from the pubmed dataset), but aims in a larger extent to provide
a corpus of pre-annotated text for other tasks (e.g. figure caption to graphic, glossary definition detection, summarization).

### Supported Tasks and Leaderboards

[Needs More Information]

### Languages

[Needs More Information]

## Dataset Structure

### Data Instances
```json
{
    "accession_id": "PMC8515580",
    "pmid": "34661004",
    "introduction": [
        "<title>Introduction</title>",
        "<p>Medicinal plants are\nknown to possess several primary and secondary\nmetabolites. The secondary metabolites in particular are involved\nin many biological activities. They are also effective against managing\noxidative stress and hence responsible to fight against various diseases\ncaused by stress.<sup> ##REF## , ##REF## </sup> The diverse chemical structures\nof such secondary metabolites have significant contributions toward\nnew drug development processes. It has been observed in the past several\ndecades that natural resources provide an enhanced biological activity,\nwhile the demands for the development of similar synthetic lead compound\nare limited.<sup> ##UREF## </sup> Antioxidants have the capacity\nto scavenge the free radicals, which are generated by metabolism and\nto some extent by various diseases.<sup> ##REF## </sup> The\nendogenous antioxidant system itself may be able to fight against\nthe deleterious effects produced by oxidative stress. This includes\nthe enzymes such as catalase, superoxide dismutase, glutathione,and\nso on that can scavenge free radicals and protect biological systems\nto some extent. The endogenous antioxidant mechanism reinforcement\nor external antioxidant supplements may help overcome the situation.<sup> ##REF## </sup></p>",
        "<p>Genus <italic>Clerodendrum</italic> belonging to\nfamily Verbenaceae or Lamiaceae has more than 500 species. This genus\nis distributed in herbs and small trees. <italic>Clerodendrum</italic> species are reported to possess anti-inflammatory, anti-diabetic,\nanti-cancer, anti-malarial properties, and so on. They comprise various\nclasses of constituents like flavonoids, phenolics, terpenes, steroids,\nvolatile constituents, and so on<italic>.</italic><sup> ##UREF## </sup> Natural sources are more widely promoted and recommended\nfor they display minimal side effects, as compared to synthetic agents.<sup> ##UREF## </sup> Drug discovery from natural resources is highly\nchallenging as the processes like authentication, screening, isolation,\nstructural elucidation, and so on<italic>.</italic> require expertise\nand well-experienced support. On the other hand, there has always\nbeen a huge demand on these natural sources for their excellent safety\nparameters.<sup> ##UREF## </sup><italic>Clerodendrum\npaniculatum</italic> (<italic>C. paniculatum</italic>) leaves, roots, and so on<italic>.</italic> are reported for their\nanti-oxidant, anti-inflammatory, hepatoprotective, and anti-diabetic\nactivities and so on. However, the flower counterpart of this plant\nhas not been investigated for any of the medicinal activities including\ntheir hepatoprotective roles in animal models. Herein, we have evaluated\nthe hepatoprotective role of the alcoholic extract of the flower part\nof <italic>C. paniculatum</italic> against CCl<sub>4</sub>-induced hepatotoxicity in female Wistar Albino rats and justified\nits pharmacological implications toward its use as traditional medicine.</p>"
    ],
    "methods": [
        "<title>DPPH Method</title>",
        "<p>The most effective and popular method of\nantioxidant evaluation is the DPPH radical scavenging method. Better\nactivity is represented by the discoloration of DPPH solution. From\nstock solution of extracts, different concentrations ranging from\n12.5 to 200 \u03bcg/mL were prepared. To 100 \u03bcL of the extract,\n3.0 mL of DPPH solution was added and incubated at room temperature.\nAfter 20 min of incubation, absorbance was measured at 515 nm against\nmethanol as blank. Absorbance of standard (ascorbic acid) was also\nmeasured. Percentage inhibition was measured by the following equation.<sup> ##REF## </sup> ##FORMU## </p>"
    ],
    "results": [
        "<title>Results</title>",
        "<p>The phytochemical screening of the flower extract indicated the\npresence of carbohydrates, tannins, phenolics, flavonoids, proteins,\nand steroids, and the results are depicted in  ##TAB## . The presence of phenolics and flavonoids\ncontents is considered as the main indicators of antioxidant activity\nin herbals.</p>",
        "<p>The total phenolic content,<sup> ##REF## </sup> as quantified\nby Folin-Ciocalteu\u2019s method, indicates the highest activity\n(378.5 \u00b1 0.883 mg QE/g) from the alcoholic extract, as compared\nto other extracts. The alcoholic extract of <italic>C. paniculatum</italic> flower showed the highest flavonoid content and hence high free-radical\nscavenging property (393.23 \u00b1 1.23 mg GAW/g) ( ##TAB## ) compared to other extracts,\nas evaluated by the AlCl<sub>3</sub> colorimetric method.</p>",
        "<p>Antioxidant activity of the extracts was evaluated by four different\nmethods.<sup> ##REF## </sup> Antioxidants have a high impact\non diseases as they can scavenge the free radicals and thereby modify\nor prevent the diseases.<sup> ##REF## </sup> DPPH assay carried\nout with the alcoholic extract shows better activity with IC<sub>50</sub> of 62.28 \u00b1 0.51 \u03bcg/mL, and the values are presented in  ##TAB##  and <ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" ext-link-type=\"uri\" xlink:href=\"https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c03722/suppl_file/ao1c03722_si_001.pdf\">Figure S1</ext-link> (Supporting Information).</p>",
        "<p>DPPH is widely used as an evaluation technique due\nto its ease\nof reaction. In the ABTS assay method, radical scavenging ability\nof the extracts was evaluated using a ABTS++ modified solution by\nthe reaction between ABTS and potassium persulfate solution,<sup> ##REF## </sup> and the IC<sub>50</sub> of the extracts was\ncalculated. The alcoholic extract presented the IC<sub>50</sub> value\nas 2362.71 \u00b1 9.39 \u03bcg/mL, while the IC<sub>50</sub> value\nof the standard ascorbic acid was evaluated as 941.09 \u00b1 8.312\n\u03bcg/mL [ ##TAB##  and <ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" ext-link-type=\"uri\" xlink:href=\"https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c03722/suppl_file/ao1c03722_si_001.pdf\">Figure S2</ext-link> (Supporting Information)].</p>",
        "<p>Nitric oxide radical scavenging activity results of\nthe extract\nwere evaluated by comparing with standard gallic acid. Nitric oxide\nis produced by the reaction between aqueous sodium nitroprusside,\noxygen, and nitrite ions, under physiological pH conditions.<sup> ##UREF## </sup> Antioxidants help scavenge this free radical,\nand this property was compared with the standard. In this method also,\nthe alcoholic extract showed better activity than all other extracts\nwith an IC<sub>50</sub> value of 193.09 \u00b1 5.84 \u03bcg/mL, and\nthe results are comparable to the standard (147.11 \u00b1 10.20 \u03bcg/mL);\nthe results are depicted in  ##TAB##  and <ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" ext-link-type=\"uri\" xlink:href=\"https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c03722/suppl_file/ao1c03722_si_001.pdf\">Figure S3</ext-link> (Supporting\nInformation).</p>",
        "<p>Reducing power ability of the extracts was determined\nusing potassium\nferricyanide. The ability of the extract to reduce potassium ferricyanide\n(Fe III) to potassium ferrocyanide (Fe II) was measured by the reaction\nwith trichloroacetic acid and FeCl<sub>3</sub>.<sup> ##REF## </sup> All the extracts exhibited a dose-dependent response. Quercetin\nwas used as the standard, and its response was observed between 1.05\n\u00b1 0.001 and 2.44 \u00b1 0.0005 \u03bcg/mL. A significant increase\nin absorbance indicates a better reducing ability, and the same was\nobserved as the alcoholic extract of <italic>C. paniculatum</italic> flower ( ##FIG## ).</p>",
        "<p>An acute oral toxicity\nstudy of the alcoholic extract at a concentration\nof 2000 mg/kg b.w. revealed that the extract is safe up to the abovementioned\nconcentration range. Hepatoprotective investigation was carried out\nwith the CCl<sub>4</sub> intoxicated model. The liver enzymes and\nprotein levels were checked for all groups of animals, and the results\nare depicted in  ##TAB##  and <ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" ext-link-type=\"uri\" xlink:href=\"https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c03722/suppl_file/ao1c03722_si_001.pdf\">Figure S4</ext-link> (Supporting Information).</p>",
        "<p>The enzyme activities associated\nwith liver functions are good\nbiomarkers for the evaluation of hepatoprotective activity of medicinal\nplants. SGOT and SGPT are enzymes present in the hepatocytes, and\ntheir leakage into the blood stream is observed during cell damage.\nThe level of SGOT is known to increase during cardiac or skeletal\nmuscle damage. ALP is an enzyme which is present in the biliary duct\nlining of liver. The estimation of total bilirubin depicts the depth\nof jaundice and also indicates the severity of liver damage. The decrease\nin the total protein level is an indicator of liver damage caused\nby insignificant protein synthesis.</p>",
        "<p>In the normal control group,\nthe values of SGOT, SGPT, ALP, total\nand direct bilirubin, and protein content were found to be 59.83 \u00b1\n6.25, 52.83 \u00b1 5.71, 101.5 \u00b1 7.92 IU/L, 0.703 \u00b1 0.05,\n0.163 \u00b1 0.02 mg/dL, and 8.47 \u00b1 0.05 g/dL, respectively.\nHowever, the CCl<sub>4</sub> intoxicated control group displayed a\nsignificant increase in these values, like SGOT (145.83 \u00b1 10.91\nIU/L), SGPT (112.17 \u00b1 7.47 IU/L), ALP (324.17 \u00b1 8.70 IU/L),\ntotal bilirubin (1.42 \u00b1 0.11 mg/dL), and direct bilirubin (0.34\n\u00b1 0.06 mg/dL), and a significant decrease in the total protein\ncontent (6.28 \u00b1 0.08 g/dL). CPFA at a concentration of 400 mg/kg\nhas shown a significant decrease in the serum enzymes like SGOT 59.83\n\u00b1 1.70 IU/L, SGPT 58.67 \u00b1 2.63 IU/L, ALP 120.33 \u00b1 2.63\nIU/L, total bilirubin 0.638 \u00b1 0.03 mg/dL, and direct bilirubin\n0.14 \u00b1 0.01 mg/dL and a significant increase in the total protein\ncontent 8.19 \u00b1 0.02 g/dL, as compared to the toxic control group.\nA liver histopathological study also supported the protective effect\nof the extracts compared to the toxic control group. The images are\nrepresented in  ##FIG## .</p>",
        "<p>Column chromatographic analysis of the extract was carried out\nwith the universal solvent system that resulted in 13 different fractions.\nPhytochemical screening of these fractions revealed the presence of\nflavonoids, phenolics, and tannins. The results are depicted in  ##TAB## .</p>",
        "<p>Total phenolic and flavonoid contents\nwere estimated for all the\nabove fractions. Out of 13 fractions, fractions 5 and 9 showed the\nhighest amount of flavonoids and phenolics. The total phenolic content\nof fraction 5 and 9 was 284.91 \u00b1 6.03 and 378.31 \u00b1 3.15\nmg GAE/g, respectively, and their flavonoid content was evaluated\nas 333.82 \u00b1 1.39 and 380.33 \u00b1 1.55 mg QE/g, respectively\n( ##TAB## ).</p>",
        "<p>Their hepatoprotective\nevaluation was carried out by an <italic>in vitro</italic> model using\ngoat liver slice culture for fractions\n5 and 9 (highlighted in  ##TAB## ) that was estimated to have higher contents of phenolics\nand flavonoids. It was revealed that fraction 9 has much better activity,\nas compared to the toxic control group. [ ##TAB## , <ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" ext-link-type=\"uri\" xlink:href=\"https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c03722/suppl_file/ao1c03722_si_001.pdf\">Figure S5</ext-link> (Supporting\nInformation)].</p>",
        "<p>GC\u2013MS analyses of the fraction 5 and 9 were\ncarried out\nto identify the compounds that are responsible for the exhibited activity.\nThe spectrum of fraction 9 is shown in  ##FIG##  and fraction 5 in <ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" ext-link-type=\"uri\" xlink:href=\"https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c03722/suppl_file/ao1c03722_si_001.pdf\">Figure S6</ext-link> (Supporting Information). From the library search, it was\nrevealed that the peak corresponding to 105.6 could be due to glyceric\nacid, peak of 169.2 could be due to gallic acid, peak of 207.35 could\nbe due to pilocarpine, and peak of 281.39 could be due to pangamic\nacid.</p>",
        "<p>Further HPTLC analysis was carried out for the alcoholic extract\nof <italic>C. paniculatum</italic> flower. The active\nfractions 5 and 9, as separated by column chromatography along with\nstandard quercetin were considered for evaluation. The solvent mixture\nchloroform/ethyl acetate/formic acid in the ratio 6:4:1 was used as\nthe mobile phase. Silica gel 60 F 254 HPTLC plates were selected for\nanalysis, and the plates were observed under white light and 254 and\n366 nm. The presence of quercetin was confirmed and quantified. The\nimages are depicted in  ##FIG## , and the respective chromatograms of the crude extract, the\nfractions under investigation along with the standard quercetin, are\nshown in <ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" ext-link-type=\"uri\" xlink:href=\"https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c03722/suppl_file/ao1c03722_si_001.pdf\">Figure S7</ext-link> (Supporting Information).</p>",
        "<p>As quantified from HPLC chromatogram\nunder 254 nm, the amount of\nquercetin present in the alcoholic extract, fraction 5, and fraction\n9 was 38.0, 34.6, and 49.6%, respectively.</p>"
    ],
    "discussion": [
        "<title>Discussion</title>",
        "<p>The\nliver, the major metabolic organ of our body, may have toxicity\ndue to various drugs like alcohol, anabolic steroids, nonsteroidal\nanti-inflammatory drug, and so on<italic>.</italic><sup> ##REF## </sup> Oxidative stress can be attributed to the major reason\nbehind this toxicity. Oxidative stress occurs due to the imbalance\nbetween free radicals generated and antioxidants present in the body.<sup> ##REF## </sup> Many medicinal plants display significant implications\ntoward traditional medicine for the treatment of hepatic diseases\nincluding hepatic disorders. Further these plants are being evaluated\nfor <italic>in vivo</italic> pharmacological activities to identify\npotent candidates. The generation of free radicals as products of\nmany biomolecular reactions plays major roles in the emergence of\ncancer and other health disturbances. It is also known that CCl<sub>4</sub> can induce the levels of various enzymes like ALT, AST, ALP,\nand \u03b3-GT in animal models. CCl<sub>4</sub> is also known to\ncause acute hepatocyte injuries that further result in the leakage\nof various hepatocyte enzymes. Many hepatoprotective agents from different\nnatural sources are reported to possess the ability to protect against\nsuch injuries by restoring the levels of the above enzymes along with\nretaining the levels of triglycerides, cholesterol, low-density lipoprotein, and high-density lipoprotein in\nthe serum to normalcy. Earlier reports have also shown the potential\nof polyphenolic compounds to play key roles in establishing such protective\nactivity.<sup> ##REF## </sup> Several mechanisms were reported\nwith animal models for the above observed activity with hepatoprotective\nagents that have strong ability to trap various metal ions like zinc,\ncalcium, and iron.<sup> ##REF## </sup> Herein, we have investigated\nthe hepatoprotective effects of <italic>C. paniculatum</italic> plant bioactive compounds against CCl<sub>4</sub>-induced hepatotoxicity\nin rats.</p>",
        "<p>Internal antioxidant deficiency can be overcome by\nsupplementing\nwith external sources. Since polyphenolics are known to have high\nantioxidant potentials, their natural sources from plants have gained\nimmense significance for them to be explored for extracting and isolating\nthese polyphenolic antioxidant constituents.<sup> ##UREF## </sup> Among these antioxidants, flavonoids have a high health promoting\nrole through their antioxidant mechanism. Due to their high free-radical\nscavenging property, the flavonoids display significant roles toward\nmanaging various diseases and disorders. Among the flavonoids, quercetin,\nrutin, apigenin, catechin, and so on are also reported for their anti-hepatotoxic\nproperties.<sup> ##UREF## </sup> Enzymatic and non-enzymatic\ncomponents of the oxidative stress can be resolved through the plant\ncell defense system. A non-enzymatic system controls the cellular\nresponses against the free radicals, whereas enzymatic responses directly\nscavenge the free radicals and hence control the antioxidant defense\nsystem.<sup> ##REF## </sup> The qualitative chemical evaluation\nresults obtained from our studies support the presence of various\nclasses of chemical compounds like carbohydrates, proteins, flavonoids,\ntannins, phenolics, and steroids. The alcoholic extract of CPF exhibited\nhigh phenolics and flavonoids that influence the apparent antioxidant\nactivity compared to other extracts. Herein, the antioxidant activity\nis evaluated by various methods including DPPH, nitric oxide radical\nscavenging, ABTS, and reducing power assay. The IC<sub>50</sub> value\nfor the alcoholic extract was represented as 62.28 \u00b1 0.51, 2362.71\n\u00b1 9.39 51, and 193.09 \u00b1 5.84 \u03bcg/mL, respectively,\nfor DPPH, ABTS, and nitric oxide radical scavenging methods. The alcoholic\nextracts were further subjected to hepatoprotective activity evaluation\nusing CCl<sub>4</sub>-induced hepatotoxic models. The evaluation was\ncarried out by determining SGOT, SGPT, ALP, direct bilirubin, total\nbilirubin, and total protein content and also through histopathology\nof liver. The results obtained revealed a marked decrease in liver\nenzyme levels along with an increase in the total protein content\nwhen compared to toxic control groups that were similar to standard\ngroups administered with silymarin. The total bilirubin in the serum\nserves as a hepatic functional marker which is associated with hepatic\ndisorder along with acute disruption of hepatocellular architecture\nand function. Moreover, the toxicant-induced liver injuries also result\nin increased levels of bilirubin. The above findings are further supported\nby the results of histopathology analysis. In the toxic control group,\nthe liver histopathological characters were showing disarranged hepatic\ncellular architecture with cell necrosis, fatty degeneration, and\ncentral vein crowding. This was almost reframed to the normal liver\narchitecture by 200 mg/kg and 400 mg/kg body weight alcoholic extract\ntreatment. In order to identify the unique constituents of the extract,\nthe fractions displaying significant activities were separated by\ncolumn chromatography using a universal solvent system (hexane, ethyl\nacetate, and methanol), and the fractions were tested for the presence\nof phenolics and flavonoid contents by both qualitative and quantitative\ntechniques. Fractions 5 and 9 which showed better phenolic and flavonoid\ncontents were then considered for <italic>in vitro</italic> hepatoprotective\nanalyses using goat liver slice culture, and the activity was compared\nwith the alcoholic extract of the plant. Of the two fractions, fraction\n9 showed better activity. GC\u2013MS analyses followed by NIST library\nsearch revealed that the constituents responsible for the above activity\nmay be glyceric acid, gallic acid, pilocarpine, or pangamic acid,\nas shown in  ##FIG## . However, fraction 5 revealed the presence of quinovic acid as the\nactive ingredient, and the GC\u2013MS spectra of the same is given\nin <ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" ext-link-type=\"uri\" xlink:href=\"https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c03722/suppl_file/ao1c03722_si_001.pdf\">Figure S6</ext-link> (Supporting Information).\nFurther HPTLC analysis revealed the presence of 34.6 and 49.6% quercetin\nin the active fractions 5 and 9, respectively, which was not revealed\nthrough GC\u2013MS.</p>"
    ],
    "conclusion": [
        "<title>Conclusions</title>",
        "<p>The implication on the\npharmacological properties from the flower\nextract of <italic>C. paniculatum</italic>, family Verbenaceae,\nis reported for the first time in the literature. Various antioxidant\nactivities carried out following various assays including DPPH, NO\nradical scavenging, ABTS activity, and reducing ability with the alcoholic\nextract showing significant activity compared to other extracts. The\ninvestigations by various enzymatic studies and histopathological\nsections with the alcoholic extract revealed excellent hepatoprotective\nactivity. The best two fractions of the extract, as determined by\ncolumn chromatographic analysis when subjected to <italic>in vitro</italic> hepatoprotective investigations, revealed fraction 9 to possess\nefficient hepatoprotective activity against carbon tetrachloride-induced\nliver toxicity in goat liver slice culture. Further analyses revealed\nthat the hepatoprotective activities of <italic>C. paniculatum</italic> flower may be attributed to the presence of the following compounds\nthat were isolated from fraction 9\u2014(i) glyceric acid, (ii)\ngallic acid, (iii) pilocarpine, (iv) pangamic acid, and (v) quercetin\neither individually or in combination of the above.</p>"
    ],
    "front": [
        "<p content-type=\"toc-graphic\"> ##GRAPH## </p>",
        "<p>The aim of the presented\nwork involves the isolation, characterization,\nand evaluation of hepatoprotective potential of <italic>Clerodendrum\npaniculatum</italic> flower extracts. For this purpose, petroleum\nether, chloroform, ethyl acetate, alcohol, and water extracts of <italic>C. paniculatum</italic> flower were screened for the flavonoid\nand phenolic content and quantified. Various antioxidant activity\nassays including 2,2\u2032-diphenyl-1-picrylhydrazyl (DPPH), nitric\noxide (NO) radical scavenging, 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic\nacid) (ABTS), and reducing ability were carried out. Of the above\nmethods, the alcoholic extract exhibited high antioxidant potential\nand was selected further for the hepatoprotective evaluations. Hepatoprotective\nevaluation of the alcoholic extract was carried out for carbon tetrachloride\n(CCl<sub>4</sub>)-intoxicated model systems. Enzymes associated with\nliver functions were estimated, and histopathological evaluations\nwere carried out to monitor the liver architecture. Prominently, reduced\nlevels of various associated enzymes along with increased protein\ncontent were observed when the liver specimen was pretreated with\nthe extract. Moreover, the liver architecture was almost comparable\nto that of the normal control group. The column chromatographic analysis\nof the extract revealed 13 fractions to possess high phenolics and\nflavonoid contents. The best two fractions were identified for <italic>in vitro</italic> hepatoprotective evaluation in the goat liver model.\nFurthermore, the GC\u2013MS analyses of the fractions were carried\nout followed by a library search, to identify the constituents responsible\nfor the hepatoprotective activity which revealed the presence of four\nmajor constituents\u2014pilocarpine, glyceric acid, pangamic acid,\nand gallic acid. An <italic>in vitro</italic> hepatoprotective study\nof the isolated fractions showed better activity compared to the whole\nalcoholic extract, and the results were comparable to the normal group\ntaken as a control. The investigations with an <italic>in vitro</italic> model suggest that the isolated fraction with rich flavonoid content\nshowed better hepatoprotective activity. GC\u2013MS analysis of\nthe fractions that displayed good hepatoprotective activity suggested\nthe presence of pilocarpine, glyceric acid, pangamic acid, and gallic\nacid, while HPTLC analysis revealed the presence of quercetin.</p>"
    ],
    "body": [
        "<title>Experimental\nSection</title>",
        "<title>Chemicals and Reagents</title>",
        "<p>The chemicals and reagents used\nfor the experiments carried out for the present investigation were\npurchased from Spectrochem, SRL, Acros-Organics, RANKEM, and Fisher\nScientific and used as received without further purification. ABTS,\nDPPH, and Folin-Ciocalteu\u2019s reagents were obtained from Sigma-Aldrich.</p>",
        "<title>Plant Collection</title>",
        "<p><italic>C. paniculatum</italic> flowers were collected from Malappuram, Kerala during August to\nOctober. The plant was identified and authenticated by Kottakkal Ayurveda\nresearch center, Kerala. The voucher specimen was deposited in the\ndepartment for further reference.</p>",
        "<title>Preparation of Plant Extracts</title>",
        "<p>The flowers weighing\n\u223c300 g were collected and dried under shade. Successively,\nsolvent extraction was carried out using petroleum ether, chloroform,\nethyl acetate, alcohol, and water as solvent medium following the\nhot continuous percolation method using a conventional Soxhlet apparatus.\nThe extracts were concentrated, and the percentage yield was calculated.</p>",
        "<title>Preliminary Phytochemical Screening</title>",
        "<p>Preliminary qualitative\nanalysis was carried out for detecting the presence of various classes\nof compounds like alkaloids, phenolics, flavonoids, saponins, glycosides,\nand steroids. Specific color change or any precipitate formation was\nconsidered as a positive response.<sup> ##UREF## , ##UREF## </sup></p>",
        "<title>Determination\nof Total Phenolic and Flavonoid Contents</title>",
        "<p>The Folin\u2013Ciocalteau\nmethod was used for the quantitative\ndetermination of phenolics in each extract. 1 mL of the extract was\nmixed with 1 mL of Folin-Ciocalteu\u2019s reagent. Then, 3 mL of\nsodium carbonate solution was added. The whole mixture was incubated\nfor 2 h, and absorbance was measured at 725 nm.<sup> ##UREF## </sup></p>",
        "<p>The total flavonoid content was estimated using the\naluminium chloride colorimetric method. 0.5 mL of the extract was\nmixed with 2 mL of water and 0.15 mL of NaNO<sub>2</sub> followed\nby the addition of 0.15 mL of 6% AlCl<sub>3</sub> solution. After\n6 min, 2 mL of 4% sodium hydroxide solution was added, and volume\nwas maintained to 5 mL using distilled water. Absorbance was measured\nat 510 nm.<sup> ##REF## </sup></p>",
        "<title><italic>In Vitro</italic> Assays</title>",
        "<title>ABTS Method</title>",
        "<p>In this method, the ABTS radical was generated\nby the oxidation of ABTS with potassium persulfate. For preparing\nABTS solution, 7 mM aqueous ABTS solution and 2.45 mM potassium per\nsulfate were mixed together. The solution was incubated in the dark\nat 29 \u00b0C for 14 h. The working solution was prepared by diluting\nthe previously prepared solution with phosphate buffer (pH 7.4). 50\n\u03bcL of the extract was mixed with 3 mL of the freshly prepared\nsolution and was allowed to stand for 20 min. After the incubation\ntime, absorbance was measured at 734 nm. The percentage inhibition\nwas measured using the above equation.<sup> ##UREF## </sup></p>",
        "<title>Nitric Oxide Radical Inhibitory Assay</title>",
        "<p>Different concentrations\nof plant extracts were mixed with 1.5 mL of 5 mM sodium nitroprusside\nin phosphate buffered saline (pH 7.4). The solution was mixed together\nand incubated at 25 \u00b0C for 3 h. After the incubation time, 1.5\nmL of the Griess reagent (2% phosphoric acid, 1% sulfanilamide, and\n0.1% <italic>N</italic>-1-naphthyl ethylene diamine dihydrochloride)\nwas added to the reaction mixture. Absorbance of the reaction mixture\nwas measured at 546 nm with reference to standard gallic acid. The\npercentage inhibition was also measured.<sup> ##UREF## , ##REF## </sup></p>",
        "<title>Reducing Power Assay</title>",
        "<p>In this method, better antioxidant\nactivity was represented by an increase in the absorbance of the reaction\nmixture. Potassium ferricyanide, ferric chloride, and trichloroacetic\nacid produce a colored complex with the antioxidant compounds, and\nits absorbance can be measured at 700 nm. 2.5 mL of phosphate buffer\n(0.2 M, pH 6.6) and 2.5 mL of potassium ferricyanide were added to\n10 mg/mL samples. The resulting mixture was incubated at 50 \u00b0C\nfor 20 min. After the incubation period, 2.5 mL of trichloroacetic\nacid was added to the mixture, and the upper layer of the resulting\nmixture was collected by the 10 min centrifugation process. To 5 mL\nof above liquid, 5 mL of distilled water and 1 mL of ferric chloride\n(0.1% w/v) were added, and absorbance was measured at 700 nm.<sup> ##REF## , ##REF## </sup></p>",
        "<title>Statistical Analysis</title>",
        "<p>All the procedures were carried\nout in triplicates, and the results were expressed as the mean \u00b1\nstandard deviation. The statistical analyses were carried out using\nSPSS software version 20.</p>",
        "<title><italic>In Vivo</italic> Animal Experiments</title>",
        "<title>Selection\nof Animals</title>",
        "<p>Female Wistar Albino rats weighing\n100\u2013130 g were used for the hepatoprotective analysis of the\nalcoholic extract. Standard laboratory conditions were followed for\nanimal maintenance, and they were fed with standard food and water\nad libitum. The experimental protocol was approved by the Al Shifa\nCollege of Pharmacy Institutional Animal Ethical Committee (IAEC)\n(regd. no. 1195/Re/S/08/CPCSEA).</p>",
        "<title>Acute Toxicity Study</title>",
        "<p><italic>C. paniculatum</italic> flower alcoholic\nextract\u2019s acute toxicity was conducted on\nalbino rats, according to the OECD guidelines no. 425. After 12 h\nof fasting, the extract (2000 mg/kg) was administered orally. The\nanimals were observed for 14 days to check mortality, any behavioral\nchanges, any discomforts, and so on<italic>.</italic><sup> ##REF## </sup></p>",
        "<title>CCl<sub>4</sub>-Induced Hepatoprotective\nStudy</title>",
        "<p>Five\ngroups of six animals were selected, and the experiment was conducted\nfor 14 days.</p>",
        "<p>Doses: the animals of the vehicle group (group\nI) received CMC (5 ml/kg b.w.) orally, and CCl<sub>4</sub> in liquid\nparaffin was administered to animals of group II\u2013V <italic>via</italic> subcutaneous route for 14 days. Standard dose (silymarin,\n50 mg/kg b.w.) was administered to group III, and group IV animals\nreceived CPFA1 (200 mg/kg b.w.) by oral route. Group V animals received\nthe CPFA 2 (400 mg/kg b.w.) extract. After 14 days of treatment, all\nthe animals were sacrificed by cervical decapitation, and blood samples\nwere collected by cardiac puncture. Serum was collected by centrifugation\nat 3000 rpm and examined for enzyme analysis such as SGOT, SGPT, ALP,\ntotal and direct bilirubin, and total protein content. Data were analyzed\nby one-way ANOVA followed by Dunnett\u2019s test.<sup> ##REF## \u2212 ##UREF## </sup></p>",
        "<title>Statistical\nAnalysis</title>",
        "<p>The results of the <italic>in\nvivo</italic> experiments conducted were expressed as mean \u00b1\nS.E.M. SPSS software version 20 was used for statistical analysis.</p>",
        "<title>Histopathology</title>",
        "<p>The livers were excised and washed with\nnormal saline. Liver fragments were fixed in 10% buffered formalin\nfollowed by paraffin embedding. Liver sections of 0.5 \u03bcm thickness\nwere taken and stained with the hematoxylin\u2013eosin dye. The\nsections were mounted and microscopically observed for studying histological\nchanges if any.<sup> ##UREF## </sup></p>",
        "<title>Isolation of Compound Using\nColumn Chromatography</title>",
        "<p>Around\n1 g of the alcoholic extract of the plant was loaded into the column,\nand gradient elution was carried out using hexane, ethyl acetate,\nand methanol as the mobile phase.<sup> ##REF## , ##REF## </sup> The solvent\nwas passed through the column at 1 mL per minute under gravity to\nfractionate the sample extract. Each fraction was collected in a test\ntube and was numbered subsequently. The fractions obtained were subjected\nto the qualitative chemical test for identification of tannins, phenolics,\nand flavonoids.<sup> ##UREF## , ##UREF## , ##UREF## </sup> The quantitative estimation for phenolics and flavonoid was carried\nout,<sup> ##UREF## , ##REF## </sup> and the best two fractions were selected\nfor an <italic>in vitro</italic> hepatoprotective activity study using\ngoat liver slice culture.</p>",
        "<title><italic>In Vitro</italic> Hepatoprotective\nStudy</title>",
        "<p>The\nfresh goat livers were obtained from the local market. The liver was\nremoved and transferred to presterilized Krebs Ringer Herpes (KRH)\nmedium. The liver was cut into thin slices ranging from 4 to 6 mg\nusing a sharp blade and was used for the study. Each set weighing\n100 mg contains 20\u201325 slices. Tissues were washed with 10 mL\nof KRH medium in every 10 min over a period of 1 h. The slices were\npreincubated at 37 \u00b0C for 60 min in cotton-plugged beakers containing\n10 mL of KOH. The liver slices were further divided into individual\nculture for respective treatment. All the cultures were incubated\nat constant temperature in a water bath at 37 \u00b0C for 2 h. The\ncells were isolated from the culture medium of each set by centrifuging\nat 3000 rpm for 10 min at 4 \u00b0C, and the corresponding supernatants\nwere assayed for the presence of leaked biochemical markers such as\nalanine transaminase (ALT), aspartate transaminase (AST), alkaline\nphosphatase (ALP), and acid phosphatase (ACP).<sup> ##UREF## \u2212 ##UREF## </sup></p>",
        "<title>Experimental Setup for\nEvaluation of Hepatoprotective Activity</title>",
        "<p><bold>Group 1:</bold> normal control, <bold>Group 2:</bold> toxic\ncontrol<bold>\u2014</bold>CCl<sub>4</sub> (15.5 mM), <bold>Group\n3:</bold> standard (silymarin-50 mM), <bold>Group 4\u20136:</bold><italic>C. paniculatum</italic> alcoholic extract\nat the concentration range of 25\u2013100 \u03bcg/mL, <bold>Group\n7\u20139:</bold> column fraction 5 at the concentration range of\n2.5\u201310 \u03bcg/mL, and <bold>Group 10\u201312:</bold> column\nfraction 9 at the concentration range of 2.5\u201310 \u03bcg/mL.</p>",
        "<title>GC\u2013MS Analyses</title>",
        "<p>Mass spectra were recorded on\na Schimadzu GCMS-QP2020 Gas chromatograph mass spectrometer. The constituents\npresent in various fractions of the extracts were predicted using\nNIST/EPA/NIH mass spectral library\u20142017. The equipment has\na DB 35-MS capillary standard non-polar poly (dimethylsiloxane) column\nwith dimensions of 30 mm \u00d7 0.25 mm ID \u00d7 0.25 \u03bcm film.\nHelium was used as the carrier gas with a flow rate of 1.0 mL/min.\nThe injector was operated at 280 \u00b0C, and the oven temperature\nwas programmed as follows: 70\u2013280 \u00b0C, gradually increased\nby 10 \u00b0C per/min.</p>"
    ],
    "back": [
        "<title>Supporting Information Available</title>",
        "<p>The Supporting Information is\navailable free of charge at <ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" ext-link-type=\"uri\" xlink:href=\"https://pubs.acs.org/doi/10.1021/acsomega.1c03722?goto=supporting-info\">https://pubs.acs.org/doi/10.1021/acsomega.1c03722</ext-link>.<list id=\"silist\" list-type=\"simple\"><list-item><p>Antioxidant activity and\nGC\u2013MS spectrum of fraction\n5 (<ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" ext-link-type=\"uri\" xlink:href=\"https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c03722/suppl_file/ao1c03722_si_001.pdf\">PDF</ext-link>)</p></list-item></list></p>",
        "<title>Supplementary Material</title>",
        "<p>This research\ndid not receive any specific grant from funding agencies in the public,\ncommercial, or not-for-profit sectors.</p>",
        "<p>The authors declare no\ncompeting financial interest.</p>",
        "<title>Acknowledgments</title>",
        "<p>The authors would like to express their sincere\nthanks to the Management of Vellore Institute of Technology, Vellore\nand Chennai campus for providing necessary support.</p>"
    ],
    "figure": [
        "<fig id=\"fig1\" position=\"float\"><label>Figure 1</label><caption><p>Determination\nof reducing power for various solvent extracts from\nthe flowers of <italic>C. paniculatum</italic>, where\nCPFP denotes the <italic>C. paniculatum</italic> flower\npetroleum ether extract, CPFC indicates the <italic>C. paniculatum</italic> flower chloroform extract, CPFE indicates the <italic>C.\npaniculatum</italic> flower ethyl acetate extract, CPFA indicates\nthe <italic>C. paniculatum</italic> flower alcohol extract,\nand CPFW indicates the <italic>C. paniculatum</italic> flower water extract.</p></caption> ##GRAPH## </fig>",
        "<fig id=\"fig2\" position=\"float\"><label>Figure 2</label><caption><p>Photographs of hematoxylin/eosin-stained liver sections. (A) Normal\ncontrol group rat representing normal liver architecture, (B) CCl<sub>4</sub> intoxicated rat liver showing cell necrosis around central\nvein, loss of cell boundaries, and ballooning degeneration, (C) liver\nsection of the standard group showing less cell necrosis and less\ncentral vein crowding, (D) CPFA (200 mg/kg), and (E) CPFA (400 mg/kg)\nreceived group showed a moderate degree of liver damage and cell inflammation\nand reduced cell crowding.</p></caption> ##GRAPH## </fig>",
        "<fig id=\"fig3\" position=\"float\"><label>Figure 3</label><caption><p>GC\u2013MS chromatogram of fraction 9.</p></caption> ##GRAPH## </fig>",
        "<fig id=\"fig4\" position=\"float\"><label>Figure 4</label><caption><p>HPTLC\nplates observed under (a) normal light and (b) 254 and (c)\n366 nm.</p></caption> ##GRAPH## </fig>"
    ],
    "table": [
        "<table-wrap id=\"tbl1\" position=\"float\"><label>Table 1</label><caption><title>Phytochemical Screening for the Flower\nExtract of <italic>C. paniculatum</italic></title></caption><table frame=\"hsides\" rules=\"groups\" border=\"0\"><colgroup><col align=\"left\"/><col align=\"left\"/><col align=\"left\"/><col align=\"left\"/><col align=\"left\"/><col align=\"left\"/></colgroup><thead><tr><th style=\"border:none;\" align=\"center\">chemical class</th><th style=\"border:none;\" align=\"center\">petroleum ether</th><th style=\"border:none;\" align=\"center\">chloroform</th><th style=\"border:none;\" align=\"center\">ethyl acetate</th><th style=\"border:none;\" align=\"center\">alcohol<xref rid=\"t1fn1\" ref-type=\"table-fn\">a</xref></th><th style=\"border:none;\" align=\"center\">water<xref rid=\"t1fn1\" ref-type=\"table-fn\">a</xref></th></tr></thead><tbody><tr><td style=\"border:none;\" align=\"left\">proteins</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">++</td></tr><tr><td style=\"border:none;\" align=\"left\">carbohydrates</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">+</td><td style=\"border:none;\" align=\"left\">+</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">+++</td></tr><tr><td style=\"border:none;\" align=\"left\">flavonoids</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">+++</td><td style=\"border:none;\" align=\"left\">++</td></tr><tr><td style=\"border:none;\" align=\"left\">tannins and phenolics</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">+++</td><td style=\"border:none;\" align=\"left\">++</td></tr><tr><td style=\"border:none;\" align=\"left\">steroids</td><td style=\"border:none;\" align=\"left\">+</td><td style=\"border:none;\" align=\"left\">+</td><td style=\"border:none;\" align=\"left\">+</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td></tr><tr><td style=\"border:none;\" align=\"left\">glycosides</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td></tr><tr><td style=\"border:none;\" align=\"left\">alkaloids</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td></tr><tr><td style=\"border:none;\" align=\"left\">volatile oils</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td></tr></tbody></table> ##FOOTN## </table-wrap>",
        "<table-wrap id=\"tbl2\" position=\"float\"><label>Table 2</label><caption><title>Quantification of Total Phenolics\nand Flavonoids in Extracts of <italic>C. paniculatum</italic> Flower</title></caption><table frame=\"hsides\" rules=\"groups\" border=\"0\"><colgroup><col align=\"left\"/><col align=\"char\" char=\"\u00b1\"/><col align=\"char\" char=\"\u00b1\"/></colgroup><thead><tr><th style=\"border:none;\" align=\"center\">sample</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">total phenolic\ncontent (mg\u00a0GAE/g)</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">flavonoid content (mg\u00a0QE/g)</th></tr></thead><tbody><tr><td style=\"border:none;\" align=\"left\">petroleum ether</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">81.5\u00a0\u00b1\u00a00.91</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">64.03\u00a0\u00b1\u00a01.21</td></tr><tr><td style=\"border:none;\" align=\"left\">chloroform</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">114.6\u00a0\u00b1\u00a00.46</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">137.10\u00a0\u00b1\u00a01.85</td></tr><tr><td style=\"border:none;\" align=\"left\">ethyl acetate</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">148.6\u00a0\u00b1\u00a00.81</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">121.27\u00a0\u00b1\u00a01.20</td></tr><tr><td style=\"border:none;\" align=\"left\">alcohol</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">378.5\u00a0\u00b1\u00a00.88</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">393.23\u00a0\u00b1\u00a01.33</td></tr><tr><td style=\"border:none;\" align=\"left\">water</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">108.9\u00a0\u00b1\u00a01.15</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">131.07\u00a0\u00b1\u00a00.96</td></tr></tbody></table></table-wrap>",
        "<table-wrap id=\"tbl3\" position=\"float\"><label>Table 3</label><caption><title>Antioxidant\nPotential, as Determined\nby DPPH Assay with the Alcoholic Extract of <italic>C. paniculatum</italic> Flower</title></caption><table frame=\"hsides\" rules=\"groups\" border=\"0\"><colgroup><col align=\"left\"/><col align=\"left\"/><col align=\"char\" char=\"\u00b1\"/></colgroup><thead><tr><th style=\"border:none;\" align=\"center\">Sl. no.</th><th style=\"border:none;\" align=\"center\">sample</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">IC<sub>50</sub> (\u03bcg/mL) (mean\u00a0\u00b1\u00a0S.D)</th></tr></thead><tbody><tr><td style=\"border:none;\" align=\"left\">1</td><td style=\"border:none;\" align=\"left\">standard (ascorbic acid)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">48.74\u00a0\u00b1\u00a00.21</td></tr><tr><td style=\"border:none;\" align=\"left\">2</td><td style=\"border:none;\" align=\"left\">petroleum ether</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">693.59\u00a0\u00b1\u00a013.51<xref rid=\"t3fn1\" ref-type=\"table-fn\">a</xref></td></tr><tr><td style=\"border:none;\" align=\"left\">3</td><td style=\"border:none;\" align=\"left\">chloroform</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">409.17\u00a0\u00b1\u00a02.16<xref rid=\"t3fn1\" ref-type=\"table-fn\">a</xref></td></tr><tr><td style=\"border:none;\" align=\"left\">4</td><td style=\"border:none;\" align=\"left\">ethyl acetate</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">568.54\u00a0\u00b1\u00a05.27<xref rid=\"t3fn1\" ref-type=\"table-fn\">a</xref></td></tr><tr><td style=\"border:none;\" align=\"left\">5</td><td style=\"border:none;\" align=\"left\">alcohol</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">62.28\u00a0\u00b1\u00a00.51<xref rid=\"t3fn1\" ref-type=\"table-fn\">a</xref></td></tr><tr><td style=\"border:none;\" align=\"left\">6</td><td style=\"border:none;\" align=\"left\">water</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">342.07\u00a0\u00b1\u00a00.95<xref rid=\"t3fn1\" ref-type=\"table-fn\">a</xref></td></tr></tbody></table> ##FOOTN## </table-wrap>",
        "<table-wrap id=\"tbl4\" position=\"float\"><label>Table 4</label><caption><title>Antioxidant Activity, as Evaluated\nby ABTS Assay with the Alcoholic Extract of <italic>C. paniculatum</italic> Flower</title></caption><table frame=\"hsides\" rules=\"groups\" border=\"0\"><colgroup><col align=\"left\"/><col align=\"left\"/><col align=\"char\" char=\"\u00b1\"/></colgroup><thead><tr><th style=\"border:none;\" align=\"center\">Sl. no.</th><th style=\"border:none;\" align=\"center\">sample</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">IC<sub>50</sub> (\u03bcg/mL) (mean\u00a0\u00b1\u00a0S.D)</th></tr></thead><tbody><tr><td style=\"border:none;\" align=\"left\">1</td><td style=\"border:none;\" align=\"left\">standard (ascorbic acid)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">941.09\u00a0\u00b1\u00a08.31</td></tr><tr><td style=\"border:none;\" align=\"left\">2</td><td style=\"border:none;\" align=\"left\">petroleum ether</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">7986\u00a0\u00b1\u00a02.00<xref rid=\"t4fn1\" ref-type=\"table-fn\">a</xref></td></tr><tr><td style=\"border:none;\" align=\"left\">3</td><td style=\"border:none;\" align=\"left\">chloroform</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">3643.36\u00a0\u00b1\u00a01.37<xref rid=\"t4fn1\" ref-type=\"table-fn\">a</xref></td></tr><tr><td style=\"border:none;\" align=\"left\">4</td><td style=\"border:none;\" align=\"left\">ethyl acetate</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">8628.2\u00a0\u00b1\u00a06.21<xref rid=\"t4fn1\" ref-type=\"table-fn\">a</xref></td></tr><tr><td style=\"border:none;\" align=\"left\">5</td><td style=\"border:none;\" align=\"left\">alcohol</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">2362.71\u00a0\u00b1\u00a09.39<xref rid=\"t4fn1\" ref-type=\"table-fn\">a</xref></td></tr><tr><td style=\"border:none;\" align=\"left\">6</td><td style=\"border:none;\" align=\"left\">water</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">8781.6\u00a0\u00b1\u00a016.31<xref rid=\"t4fn1\" ref-type=\"table-fn\">a</xref></td></tr></tbody></table> ##FOOTN## </table-wrap>",
        "<table-wrap id=\"tbl5\" position=\"float\"><label>Table 5</label><caption><title>Antioxidant Activity, as Determined\nby Nitric Oxide Radical Scavenging Assay with the Alcoholic Extract\nof <italic>C. paniculatum</italic> Flower</title></caption><table frame=\"hsides\" rules=\"groups\" border=\"0\"><colgroup><col align=\"left\"/><col align=\"left\"/><col align=\"char\" char=\"\u00b1\"/></colgroup><thead><tr><th style=\"border:none;\" align=\"center\">Sl. no.</th><th style=\"border:none;\" align=\"center\">sample</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">IC<sub>50</sub> (\u03bcg/mL) (mean\u00a0\u00b1\u00a0S.D)</th></tr></thead><tbody><tr><td style=\"border:none;\" align=\"left\">1</td><td style=\"border:none;\" align=\"left\">standard (gallic acid)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">147.11\u00a0\u00b1\u00a010.20</td></tr><tr><td style=\"border:none;\" align=\"left\">2</td><td style=\"border:none;\" align=\"left\">petroleum ether</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">4765.42\u00a0\u00b1\u00a06.88<xref rid=\"t5fn1\" ref-type=\"table-fn\">a</xref></td></tr><tr><td style=\"border:none;\" align=\"left\">3</td><td style=\"border:none;\" align=\"left\">chloroform</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">1129.17\u00a0\u00b1\u00a017.74<xref rid=\"t5fn1\" ref-type=\"table-fn\">a</xref></td></tr><tr><td style=\"border:none;\" align=\"left\">4</td><td style=\"border:none;\" align=\"left\">ethyl acetate</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">3970.74\u00a0\u00b1\u00a03.57<xref rid=\"t5fn1\" ref-type=\"table-fn\">a</xref></td></tr><tr><td style=\"border:none;\" align=\"left\">5</td><td style=\"border:none;\" align=\"left\">alcohol</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">193.09\u00a0\u00b1\u00a05.84<xref rid=\"t5fn1\" ref-type=\"table-fn\">a</xref></td></tr><tr><td style=\"border:none;\" align=\"left\">6</td><td style=\"border:none;\" align=\"left\">water</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">1384.17\u00a0\u00b1\u00a013.77<xref rid=\"t5fn1\" ref-type=\"table-fn\">a</xref></td></tr></tbody></table> ##FOOTN## </table-wrap>",
        "<table-wrap id=\"tbl6\" position=\"float\"><label>Table 6</label><caption><title>SGOT, SGPT, ALP, Total and Direct\nBilirubin, and Total Protein Levels of All Groups of Animals<xref rid=\"t6fn1\" ref-type=\"table-fn\">a</xref><sup>,</sup><xref rid=\"t6fn2\" ref-type=\"table-fn\">b</xref></title></caption><table frame=\"hsides\" rules=\"groups\" border=\"0\"><colgroup><col align=\"left\"/><col align=\"char\" char=\"\u00b1\"/><col align=\"char\" char=\"\u00b1\"/><col align=\"char\" char=\"\u00b1\"/><col align=\"char\" char=\"\u00b1\"/><col align=\"char\" char=\"\u00b1\"/><col align=\"char\" char=\"\u00b1\"/></colgroup><thead><tr><th style=\"border:none;\" align=\"center\">\u00a0</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">\u00a0</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">\u00a0</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">\u00a0</th><th colspan=\"2\" align=\"center\" char=\"\u00b1\">Bilirubin (mg/dL)<hr/></th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">\u00a0</th></tr><tr><th style=\"border:none;\" align=\"center\">groups</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">SGOT (IU/L)</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">SGPT (IU/L)</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">ALP (IU/L)</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">total</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">direct</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">total protein (g/dL)</th></tr></thead><tbody><tr><td style=\"border:none;\" align=\"left\">vehicle control</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">59.33\u00a0\u00b1\u00a02.55**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">52.83\u00a0\u00b1\u00a02.33**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">101.5\u00a0\u00b1\u00a07.92**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">0.703\u00a0\u00b1\u00a00.02**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">0.163\u00a0\u00b1\u00a00.01**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">8.47\u00a0\u00b1\u00a00.02**</td></tr><tr><td style=\"border:none;\" align=\"left\">toxic control</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">145.83\u00a0\u00b1\u00a04.45</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">112.17\u00a0\u00b1\u00a03.05</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">324.17\u00a0\u00b1\u00a03.55</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">1.42\u00a0\u00b1\u00a00.05</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">0.34\u00a0\u00b1\u00a00.02</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">6.28\u00a0\u00b1\u00a00.03</td></tr><tr><td style=\"border:none;\" align=\"left\">standard (silymarin)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">66.33\u00a0\u00b1\u00a02.19**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">56.67\u00a0\u00b1\u00a02.20**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">109.83\u00a0\u00b1\u00a03.21**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">0.752\u00a0\u00b1\u00a00.01**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">0.17\u00a0\u00b1\u00a00.01**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">8.36\u00a0\u00b1\u00a00.02**</td></tr><tr><td style=\"border:none;\" align=\"left\">CPFA (200\u00a0mg/kg)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">64.67\u00a0\u00b1\u00a02.08**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">62.83\u00a0\u00b1\u00a00.79**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">128.50\u00a0\u00b1\u00a02.88**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">0.787\u00a0\u00b1\u00a00.03**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">0.18\u00a0\u00b1\u00a00.01**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">8.12\u00a0\u00b1\u00a00.01**</td></tr><tr><td style=\"border:none;\" align=\"left\">CPFA (400\u00a0mg/kg)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">59.83\u00a0\u00b1\u00a01.70**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">58.67\u00a0\u00b1\u00a02.63**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">120.33\u00a0\u00b1\u00a02.63**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">0.638\u00a0\u00b1\u00a00.03**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">0.14\u00a0\u00b1\u00a00.01**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">8.19\u00a0\u00b1\u00a00.02**</td></tr></tbody></table> ##FOOTN## </table-wrap>",
        "<table-wrap id=\"tbl7\" position=\"float\"><label>Table 7</label><caption><title>Phytochemical Screening for Phenolics\nand Flavonoids of Isolated Fractions of the Alcoholic Extract of <italic>C. paniculatum</italic><xref rid=\"t7fn1\" ref-type=\"table-fn\">a</xref></title></caption><table frame=\"hsides\" rules=\"groups\" border=\"0\"><colgroup><col align=\"left\"/><col align=\"left\"/><col align=\"left\"/><col align=\"left\"/><col align=\"left\"/></colgroup><thead><tr><th style=\"border:none;\" align=\"center\">fractions</th><th style=\"border:none;\" align=\"center\">shinoda test</th><th style=\"border:none;\" align=\"center\">ferric\nchloride</th><th style=\"border:none;\" align=\"center\">lead acetate test</th><th style=\"border:none;\" align=\"center\">alkaline reagent test</th></tr></thead><tbody><tr><td style=\"border:none;\" align=\"left\">F1</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td></tr><tr><td style=\"border:none;\" align=\"left\">F 2</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td></tr><tr><td style=\"border:none;\" align=\"left\">F 3</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">-</td></tr><tr><td style=\"border:none;\" align=\"left\">F 4</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">+</td><td style=\"border:none;\" align=\"left\">+</td><td style=\"border:none;\" align=\"left\">-</td></tr><tr><td style=\"border:none;\" align=\"left\">F 5</td><td style=\"border:none;\" align=\"left\">+++</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">+++</td><td style=\"border:none;\" align=\"left\">+++</td></tr><tr><td style=\"border:none;\" align=\"left\">F\n6</td><td style=\"border:none;\" align=\"left\">-</td><td style=\"border:none;\" align=\"left\">+</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">+</td></tr><tr><td style=\"border:none;\" align=\"left\">F 7</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">+</td><td style=\"border:none;\" align=\"left\">+</td><td style=\"border:none;\" align=\"left\">+</td></tr><tr><td style=\"border:none;\" align=\"left\">F 8</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">+</td><td style=\"border:none;\" align=\"left\">+</td></tr><tr><td style=\"border:none;\" align=\"left\">F 9</td><td style=\"border:none;\" align=\"left\">+++</td><td style=\"border:none;\" align=\"left\">+++</td><td style=\"border:none;\" align=\"left\">+++</td><td style=\"border:none;\" align=\"left\">+++</td></tr><tr><td style=\"border:none;\" align=\"left\">F 10</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">+</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">+</td></tr><tr><td style=\"border:none;\" align=\"left\">F 11</td><td style=\"border:none;\" align=\"left\">+++</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">+</td></tr><tr><td style=\"border:none;\" align=\"left\">F 12</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">+++</td><td style=\"border:none;\" align=\"left\">+++</td><td style=\"border:none;\" align=\"left\">+</td></tr><tr><td style=\"border:none;\" align=\"left\">F 13</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">++</td><td style=\"border:none;\" align=\"left\">+</td></tr></tbody></table> ##FOOTN## </table-wrap>",
        "<table-wrap id=\"tbl8\" position=\"float\"><label>Table 8</label><caption><title>Total Phenolic and Flavonoid Contents\nof Fractions Obtained from the Alcoholic Extract of <italic>C. paniculatum</italic></title></caption><table frame=\"hsides\" rules=\"groups\" border=\"0\"><colgroup><col align=\"left\"/><col align=\"char\" char=\"\u00b1\"/><col align=\"char\" char=\"\u00b1\"/></colgroup><thead><tr><th style=\"border:none;\" align=\"center\">column fraction</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">total phenolic content (mg\u00a0GAE/g)</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">flavonoid content (mg\u00a0QE/g)</th></tr></thead><tbody><tr><td style=\"border:none;\" align=\"left\">F 5</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">284.91\u00a0\u00b1\u00a06.03</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">333.82\u00a0\u00b1\u00a01.39</td></tr><tr><td style=\"border:none;\" align=\"left\">F 6</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">139.66\u00a0\u00b1\u00a01.93</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">198.39\u00a0\u00b1\u00a02.56</td></tr><tr><td style=\"border:none;\" align=\"left\">F 7</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">109.93\u00a0\u00b1\u00a03.48</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">115.02\u00a0\u00b1\u00a01.62</td></tr><tr><td style=\"border:none;\" align=\"left\">F 8</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">99.083\u00a0\u00b1\u00a04.49</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">99.74\u00a0\u00b1\u00a01.25</td></tr><tr><td style=\"border:none;\" align=\"left\"><bold>F 9</bold></td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">378.31<bold>\u00b1</bold><bold>3.15</bold></td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\"><bold>380.33</bold><bold>\u00b1</bold><bold>1.55</bold></td></tr><tr><td style=\"border:none;\" align=\"left\">F 10</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">97.38\u00a0\u00b1\u00a02.18</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">116.70\u00a0\u00b1\u00a01.77</td></tr><tr><td style=\"border:none;\" align=\"left\">F 11</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">138.78\u00a0\u00b1\u00a04.85</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">174.50\u00a0\u00b1\u00a01.604</td></tr><tr><td style=\"border:none;\" align=\"left\">F 12</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">146.40\u00a0\u00b1\u00a00.50</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">178.56\u00a0\u00b1\u00a01.72</td></tr><tr><td style=\"border:none;\" align=\"left\">F 13</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">147.99\u00a0\u00b1\u00a01.06</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">192.52\u00a0\u00b1\u00a01.61</td></tr></tbody></table></table-wrap>",
        "<table-wrap id=\"tbl9\" position=\"float\"><label>Table 9</label><caption><title><italic>In Vitro</italic> Studies\nof Fractions<xref rid=\"t9fn1\" ref-type=\"table-fn\">a</xref></title></caption><table frame=\"hsides\" rules=\"groups\" border=\"0\"><colgroup><col align=\"left\"/><col align=\"char\" char=\"\u00b1\"/><col align=\"char\" char=\"\u00b1\"/><col align=\"char\" char=\"\u00b1\"/><col align=\"char\" char=\"\u00b1\"/></colgroup><thead><tr><th style=\"border:none;\" align=\"center\">groups</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">SGOT (IU/L)</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">SGPT (IU/L)</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">ALP (IU/L)</th><th style=\"border:none;\" align=\"center\" char=\"\u00b1\">ACP (IU/L)</th></tr></thead><tbody><tr><td style=\"border:none;\" align=\"left\">vehicle\ncontrol</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">39.33\u00a0\u00b1\u00a03.512**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">56.00\u00a0\u00b1\u00a02.646**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">95.67\u00a0\u00b1\u00a02.082**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">10.52\u00a0\u00b1\u00a01.572**</td></tr><tr><td style=\"border:none;\" align=\"left\">toxic control</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">191.00\u00a0\u00b1\u00a05.568</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">248.67\u00a0\u00b1\u00a02.082</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">309.00\u00a0\u00b1\u00a06.557</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">45.33\u00a0\u00b1\u00a01.528</td></tr><tr><td style=\"border:none;\" align=\"left\">standard\n(silymarin 50\u00a0mM)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">42.67\u00a0\u00b1\u00a04.042**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">62.00\u00a0\u00b1\u00a01.000**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">106.67\u00a0\u00b1\u00a02.517**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">12.33\u00a0\u00b1\u00a02.517**</td></tr><tr><td style=\"border:none;\" align=\"left\">CPLE\nextract (100\u00a0\u03bcg/mL)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">150.00\u00a0\u00b1\u00a02.000**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">210.00\u00a0\u00b1\u00a04.583**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">266.00\u00a0\u00b1\u00a06.557**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">41.67\u00a0\u00b1\u00a01.528**</td></tr><tr><td style=\"border:none;\" align=\"left\">CPLE extract (200\u00a0\u03bcg/mL)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">128.33\u00a0\u00b1\u00a01.526**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">180.00\u00a0\u00b1\u00a02.000**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">221.33\u00a0\u00b1\u00a03.215**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">36.33\u00a0\u00b1\u00a01.528**</td></tr><tr><td style=\"border:none;\" align=\"left\">CPLE extract (400\u00a0\u03bcg/mL)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">101.33\u00a0\u00b1\u00a02.517**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">157.33\u00a0\u00b1\u00a04.510**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">181.67\u00a0\u00b1\u00a06.658**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">33.00\u00a0\u00b1\u00a04.000**</td></tr><tr><td style=\"border:none;\" align=\"left\">fraction 5 (25\u00a0\u03bcg/mL)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">132.00\u00a0\u00b1\u00a02.000**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">156.33\u00a0\u00b1\u00a04.042**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">172.67\u00a0\u00b1\u00a02.516**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">40.67\u00a0\u00b1\u00a02.082**</td></tr><tr><td style=\"border:none;\" align=\"left\">fraction 5 (50\u00a0\u03bcg/mL)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">124.00\u00a0\u00b1\u00a03.606**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">142.67\u00a0\u00b1\u00a03.055**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">161.33\u00a0\u00b1\u00a03.215**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">31.67\u00a0\u00b1\u00a00.577**</td></tr><tr><td style=\"border:none;\" align=\"left\">fraction 5 (100\u00a0\u03bcg/mL)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">96.33\u00a0\u00b1\u00a06.110**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">132.33\u00a0\u00b1\u00a05.860**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">145.67\u00a0\u00b1\u00a04.042**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">30.00\u00a0\u00b1\u00a05.000**</td></tr><tr><td style=\"border:none;\" align=\"left\">fraction 9 (25\u00a0\u03bcg/mL)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">95.67\u00a0\u00b1\u00a03.055**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">124.00\u00a0\u00b1\u00a02.646**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">147.00\u00a0\u00b1\u00a06.245**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">27.33\u00a0\u00b1\u00a01.528**</td></tr><tr><td style=\"border:none;\" align=\"left\">fraction 9 (50\u00a0\u03bcg/mL)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">70.33\u00a0\u00b1\u00a01.528**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">110.67\u00a0\u00b1\u00a02.082**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">132.33\u00a0\u00b1\u00a02.517**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">26.00\u00a0\u00b1\u00a02.000**</td></tr><tr><td style=\"border:none;\" align=\"left\">fraction 9 (100\u00a0\u03bcg/mL)</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">56.67\u00a0\u00b1\u00a04.726**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">83.0\u00a0\u00b1\u00a04.000**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">118.00\u00a0\u00b1\u00a02.646**</td><td style=\"border:none;\" align=\"char\" char=\"\u00b1\">20.00\u00a0\u00b1\u00a01.000**</td></tr></tbody></table> ##FOOTN## </table-wrap>"
    ],
    "formula": [
        "<disp-formula id=\"ueq1\"> ##GRAPH## </disp-formula>"
    ],
    "box": [
		"EXAMPLE FROM ANOTHER ARTICLE",
		"<boxed-text id=\"BX1\" position=\"float\" orientation=\"portrait\"><caption><title>Key messages</title></caption><list list-type=\"bullet\"><list-item><p>To understand the disease burden of chronic cough, and the burden among subgroups of the patients with chronic cough in Japan.</p></list-item></list><list list-type=\"bullet\"><list-item><p>There is an unmet need for better interventions and treatments to improve the quality of life, and reduce work productivity and activity impairment, healthcare resource utilisation and experience of anxiety, depression and sleep problems among patients with chronic cough in Japan.</p></list-item></list><list list-type=\"bullet\"><list-item><p>This study provides novel evidence on the burden of chronic cough in Japan through a population-based survey, using validated instruments.</p></list-item></list></boxed-text>"
	],
    "code": [
		"EXAMPLE FROM ANOTHER ARTICLE",
		"<code xml:space=\"preserve\" position=\"float\" orientation=\"portrait\">\n<monospace>\n\nLupe.dat$w &lt;\u2013 ifelse(Lupe.dat$case_<bold>==</bold>1, 1, 5000)\n\n\nHSF.Lupe &lt;\u2013 glm(case_ ~ elevation + popden + landuseC,\n\n\n data = Lupe.dat,\n\n\n weight = w,\n\n\n family = binomial)\n\n\n\n</monospace></code>",
        "<code xml:space=\"preserve\" position=\"float\" orientation=\"portrait\">\n<monospace>\n\nLupe.dat &lt;\u2010 within(Lupe.dat,\n\n\n landuseC1 &lt;\u2010 relevel(landuseC, ref = \"wet\"))\n\n\n HSF.Lupe2 &lt;\u2010 glm(case_ ~ elevation + popden + landuseC1,\n\n\n data = Lupe.dat,\n\n\n weight = w,\n\n\n family = binomial)\n\n\n\n</monospace></code>",
        "<code xml:space=\"preserve\" position=\"float\" orientation=\"portrait\">\n<monospace>\n\nLupe.dat &lt;\u2010 within(Lupe.dat, landuseC &lt;\u2010 relevel(landuseC, ref = \"forest\"))\n\n\nHSF.Lupe3 &lt;\u2010 glm(case_ ~ elevation + popden + landuseC + elevation:landuseC,\n\n\n data = Lupe.dat,\n\n\n weight = w,\n\n\n family = binomial)\n\n\n\n</monospace></code>"
	],
    "quote": [
		"EXAMPLE FROM ANOTHER ARTICLE",
		"<disp-quote><p id=\"Par20\">I constantly feel like I am fighting some system or individual to get my medical needs met.</p><p id=\"Par21\">\u2014Keisha Currie</p></disp-quote>",
        "<disp-quote><p id=\"Par25\">Generally, there is a neurological exam performed, but it is subjective and by no means inclusive of invisible symptoms.</p><p id=\"Par26\">\u2014Keisha Currie</p></disp-quote>",
        "<disp-quote><p id=\"Par31\">Every day you wake up and do an inventory of what body parts are functioning properly, first. Then, you decide if you are going to lie to yourself and others and say, \u201cI\u2019m fine,\u201d when asked how you are doing because you know it is easier.</p><p id=\"Par32\">\u2014Keisha Currie</p></disp-quote>",
        "<disp-quote><p id=\"Par34\">As an administrator of a 35,000-member online group of people living with MS, I often hear, \u201cWe are not taken seriously!\u201d, \u201cI am treated as a drug seeker,\u201d and \u201cThe doctor doesn\u2019t believe me because they can\u2019t see how this impacts me because I look good during the visit.\u201d</p><p id=\"Par35\">\u2014Cherie Binns</p></disp-quote>",
        "<disp-quote><p id=\"Par38\">Often, African Americans have religious views and will reply, \u201cJust pray about it!\u2019\u201d to imply that God will simply take my MS away. Thankfully, I had developed my own views about this shortly after diagnosis or it would have been more isolating.</p><p id=\"Par39\">\u2014Keisha Currie</p></disp-quote>",
        "<disp-quote><p id=\"Par42\">I feel that HCPs can have honest conversations with patients about how their MS is presenting, how management strategies can be beneficial, and long-term planning.</p><p id=\"Par43\">\u2014Keisha Currie</p></disp-quote>"
	],
    "chem": [
		"EXAMPLE FROM ANOTHER ARTICLE",
		"<chem-struct-wrap id=\"open202000358-disp-0001\" position=\"float\" orientation=\"portrait\"><chem-struct> ##GRAPH## </chem-struct></chem-struct-wrap>",
        "<chem-struct-wrap id=\"open202000358-disp-0002\" position=\"float\" orientation=\"portrait\"><chem-struct> ##GRAPH## </chem-struct></chem-struct-wrap>",
        "<chem-struct-wrap id=\"open202000358-disp-0003\" position=\"float\" orientation=\"portrait\"><chem-struct> ##GRAPH## </chem-struct></chem-struct-wrap>",
        "<chem-struct-wrap id=\"open202000358-disp-0004\" position=\"float\" orientation=\"portrait\"><chem-struct> ##GRAPH## </chem-struct></chem-struct-wrap>"
	],
    "supplementary": [
        "<supplementary-material content-type=\"local-data\" id=\"sifile1\"> ##MEDIA## </supplementary-material>"
    ],
    "footnote": [
        "<table-wrap-foot><fn id=\"t1fn1\"><label>a</label><p>+++: highly present, ++: moderately\npresent, +: low, and -: absent.</p></fn></table-wrap-foot>",
        "<table-wrap-foot><fn id=\"t3fn1\"><label>a</label><p><italic>p</italic> &lt; 0.01, as\ncompared with the standard group.</p></fn></table-wrap-foot>",
        "<table-wrap-foot><fn id=\"t4fn1\"><label>a</label><p><italic>p</italic> &lt; 0.01, as\ncompared with the standard group.</p></fn></table-wrap-foot>",
        "<table-wrap-foot><fn id=\"t5fn1\"><label>a</label><p><italic>p</italic> &lt; 0.01, as\ncompared with the standard group.</p></fn></table-wrap-foot>",
        "<table-wrap-foot><fn id=\"t6fn1\"><label>a</label><p>Values\nare expressed as mean \u00b1\nSEM of six rats in each group. **<italic>p</italic> &lt; 0.05, as\ncompared with the toxic control group.</p></fn><fn id=\"t6fn2\"><label>b</label><p>CPFA: <italic>C. paniculatum</italic> flower\nalcoholic extract, SGOT: serum glutamate oxaloacetate transferase,\nSGPT: serum glutamate pyruvate transferase, and ALP: alkaline phosphatase.</p></fn></table-wrap-foot>",
        "<table-wrap-foot><fn id=\"t7fn1\"><label>a</label><p>+++: highly present, ++: moderately\npresent, +: low, -: absent, and F represents fractions.</p></fn></table-wrap-foot>",
        "<table-wrap-foot><fn id=\"t9fn1\"><label>a</label><p>The values are represented as mean\n\u00b1 S.D (<italic>n</italic> = 3), **<italic>P</italic> &lt; 0.05,\nas compared with the toxic control group.</p></fn></table-wrap-foot>"
    ],
    "graphic": [
        "<graphic xlink:href=\"ao1c03722_0006\" id=\"ab-tgr1\"/>",
        "<graphic xlink:href=\"ao1c03722_0002\" id=\"gr1\" position=\"float\"/>",
        "<graphic xlink:href=\"ao1c03722_0003\" id=\"gr2\" position=\"float\"/>",
        "<graphic xlink:href=\"ao1c03722_0004\" id=\"gr3\" position=\"float\"/>",
        "<graphic xlink:href=\"ao1c03722_0005\" id=\"gr4\" position=\"float\"/>",
        "<graphic xlink:href=\"ao1c03722_m001\" position=\"anchor\"/>"
    ],
    "media": [
        "<media xlink:href=\"ao1c03722_si_001.pdf\"><caption><p>ao1c03722_si_001.pdf</p></caption></media>"
    ],
    "unknown_pub": "[{\"surname\": [\"Anand\", \"Jacobo-Herrera\", \"Altemimi\", \"Lakhssassi\"], \"given-names\": [\"U.\", \"N.\", \"A.\", \"N.\"], \"article-title\": [\"A comprehensive\\nreview on medicinal plants as antimicrobial therapeutics: Potential\\navenues of biocompatible drug discovery\"], \"source\": [\"Metabolites\"], \"year\": [\"2019\"], \"volume\": [\"9\"], \"fpage\": [\"258\"], \"pub-id\": [\"10.3390/metabo9110258\"]}, {\"surname\": [\"Kopilakkal\", \"Rani\", \"Rasheed\", \"Bency\", \"Azeem\"], \"given-names\": [\"R.\", \"S.\", \"S. P.\", \"B. T.\", \"A. K.\"], \"article-title\": [\"Monograph\\nof Clerodendrum paniculatum\"], \"source\": [\"World J. Pharm.\\nRes.\"], \"year\": [\"2019\"], \"volume\": [\"8\"], \"fpage\": [\"448\"], \"pub-id\": [\"10.20959/wjpr20198-15328\"]}, {\"surname\": [\"Ekor\"], \"given-names\": [\"M.\"], \"article-title\": [\"The growing\\nuse of herbal medicines: issues relating to adverse reactions and\\nchallenges in monitoring safety\"], \"source\": [\"Front. Pharmacol.\"], \"year\": [\"2013\"], \"volume\": [\"4\"], \"fpage\": [\"177\"], \"pub-id\": [\"10.3389/fphar.2013.00177\"]}, {\"surname\": [\"Thomford\", \"Senthebane\", \"Rowe\", \"Munro\", \"Seele\", \"Maroyi\", \"Dzobo\"], \"given-names\": [\"N.\", \"D.\", \"A.\", \"D.\", \"P.\", \"A.\", \"K.\"], \"article-title\": [\"Natural Products for\\nDrug Discovery\\nin the 21st Century: Innovations for Novel Drug Discovery\"], \"source\": [\"Int. J. Mol. Sci.\"], \"year\": [\"2018\"], \"volume\": [\"19\"], \"fpage\": [\"1578\"], \"pub-id\": [\"10.3390/ijms19061578\"]}, {\"surname\": [\"Boora\", \"Chirisa\", \"Mukanganyama\"], \"given-names\": [\"F.\", \"E.\", \"S.\"], \"article-title\": [\"Evaluation\\nof nitrite radical scavenging\\nproperties of selected Zimbabwean plant extracts and their phytoconstituents\"], \"source\": [\"J. Food Process\"], \"year\": [\"2014\"], \"volume\": [\"2014\"], \"fpage\": [\"918018\"], \"pub-id\": [\"10.1155/2014/918018\"]}, {\"surname\": [\"Altemimi\", \"Lakhssassi\", \"Baharlouei\", \"Watson\", \"Lightfoot\"], \"given-names\": [\"A.\", \"N.\", \"A.\", \"D.\", \"D.\"], \"article-title\": [\"Phytochemicals:\\nExtraction, isolation, and identification of bioactive compounds from\\nplant extracts\"], \"source\": [\"Plants\"], \"year\": [\"2017\"], \"volume\": [\"6\"], \"fpage\": [\"42\"], \"pub-id\": [\"10.3390/plants6040042\"]}, {\"surname\": [\"Fernando\", \"Soysa\"], \"given-names\": [\"C. D.\", \"P.\"], \"article-title\": [\"Evaluation of Hepatoprotective\\nactivity of Eriocaulon quinquangulare\\nin vitro using porcine liver slices against ethanol induced liver\\ntoxicity and free radical scavenging capacity\"], \"source\": [\"BMC Complementary Altern. Med.\"], \"year\": [\"2016\"], \"volume\": [\"16\"], \"fpage\": [\"74\"], \"pub-id\": [\"10.1186/s12906-016-1044-x\"]}, {\"surname\": [\"Khandelwal\", \"Varunda\"], \"given-names\": [\"K. R.\", \"S.\"], \"source\": [\"Practical\\nPharmacognosy, Techniques and Experiments\"], \"edition\": [\"23\"], \"publisher-name\": [\"Nirali Prakashan publications\"], \"publisher-loc\": [\"New Delhi\"], \"year\": [\"2008\"]}, {\"surname\": [\"Trease\", \"Evans\"], \"given-names\": [\"G. E.\", \"W. C.\"], \"source\": [\"Pharmacognosy\"], \"publisher-name\": [\"ELBS Publication\"], \"publisher-loc\": [\"East Bourne\"], \"year\": [\"2002\"]}, {\"surname\": [\"Maier\", \"Basu\"], \"given-names\": [\"C.\", \"P.\"], \"article-title\": [\"In vitro antioxidant activities and polyphenol contents of seven\\ncommercially available fruits\"], \"source\": [\"Pharmacogn. Res.\"], \"year\": [\"2016\"], \"volume\": [\"8\"], \"fpage\": [\"258\"], \"pub-id\": [\"10.4103/0974-8490.188875\"]}, {\"surname\": [\"Almeida\", \"de Sousa\", \"Arriaga\", \"do Prado\", \"Magalh\\u00e3es\", \"Maia\", \"de Lemos\"], \"given-names\": [\"M. M. B.\", \"P. H. M.\", \"\\u00c2. M. C.\", \"G. M.\", \"C. E.\\nd. C.\", \"G. A.\", \"T. L. G.\"], \"article-title\": [\"Bioactive compounds and antioxidant activity of fresh\\nexotic fruits from northeastern Brazil\"], \"source\": [\"Food\\nRes. Int.\"], \"year\": [\"2011\"], \"volume\": [\"44\"], \"fpage\": [\"2155\"], \"pub-id\": [\"10.1016/j.foodres.2011.03.051\"]}, {\"surname\": [\"Junejo\", \"Gogoi\", \"Islam\", \"Rudrapal\", \"Mondal\", \"Hazarika\", \"Zaman\"], \"given-names\": [\"J. A.\", \"G.\", \"J.\", \"M.\", \"P.\", \"H.\", \"K.\"], \"article-title\": [\"Exploration\\nof antioxidant, antidiabetic\\nand hepatoprotective activity of Diplazium esculentum - A wild edible\\nplant from North Eastern India\"], \"source\": [\"Future J. Pharm.\\nSci.\"], \"year\": [\"2018\"], \"volume\": [\"4\"], \"fpage\": [\"93\"], \"pub-id\": [\"10.1016/j.fjps.2017.10.005\"]}, {\"surname\": [\"Gnanadesigan\", \"Ravikumar\", \"Anand\"], \"given-names\": [\"M.\", \"S.\", \"M.\"], \"article-title\": [\"Hepatoprotective activity\\nofCeriops\\ndecandra(Griff.) Ding Hou mangrove plant against CCl4induced liver\\ndamage\"], \"source\": [\"J. Taibah Univ. Sci.\"], \"year\": [\"2017\"], \"volume\": [\"11\"], \"fpage\": [\"450\"], \"pub-id\": [\"10.1016/j.jtusci.2016.07.004\"]}, {\"surname\": [\"Remya\", \"Balamurali\"], \"given-names\": [\"K.\", \"M. M.\"], \"article-title\": [\"In vivo and in vitro analyses to reveal the potential\\nof Solanum violaceum as efficient hepatoprotective agent\"], \"source\": [\"Eur. J. Mol. Clin. Med.\"], \"year\": [\"2020\"], \"volume\": [\"7\"], \"fpage\": [\"41\"], \"pub-id\": [\"10.1016/S2221-1691(12)60075-6\"]}, {\"surname\": [\"Ecobichon\"], \"given-names\": [\"D. J.\"], \"source\": [\"The Basis of Toxicology\\nTesting\"], \"publisher-name\": [\"CRC Press\"], \"publisher-loc\": [\"New York\"], \"year\": [\"1997\"]}, {\"surname\": [\"Bajpai\", \"Majumder\", \"Park\"], \"given-names\": [\"V. K.\", \"R.\", \"J. G.\"], \"article-title\": [\"Isolation\\nand purification of plant\\nsecondary metabolites using column-chromatographic technique\"], \"source\": [\"Bangladesh J. Pharmacol.\"], \"year\": [\"2016\"], \"volume\": [\"11\"], \"fpage\": [\"844\"], \"pub-id\": [\"10.3329/bjp.v11i4.28185\"]}, {\"surname\": [\"Gangwar\", \"Gautam\", \"Sharma\", \"Tripathi\", \"Goel\", \"Nath\"], \"given-names\": [\"M.\", \"M. K.\", \"A. K.\", \"Y. B.\", \"R. K.\", \"G.\"], \"article-title\": [\"Antioxidant Capacity\\nand Radical Scavenging Effect of Polyphenol\\nRichMallotus philippenensisFruit Extract on Human Erythrocytes: AnIn\\nVitroStudy\"], \"source\": [\"Sci. World J.\"], \"year\": [\"2014\"], \"volume\": [\"2014\"], \"fpage\": [\"279451\"], \"pub-id\": [\"10.1155/2014/279451\"]}, {\"surname\": [\"Chaudhari\", \"Mahajan\"], \"given-names\": [\"G. M.\", \"R. T.\"], \"article-title\": [\"In vitro hepatoprotective activity of Terminalia arjuna\\nstem bark and its flavonoids against CCl\"], \"sub\": [\"4\"], \"source\": [\"Asian J. Plant\\nSci. Res.\"], \"year\": [\"2016\"], \"volume\": [\"6\"], \"fpage\": [\"10\"]}, {\"surname\": [\"Rajopadhye\", \"Upadhye\"], \"given-names\": [\"A.\", \"A. S.\"], \"article-title\": [\"Estimation of Bioactive\\nCompound, Maslinic Acid by\\nHPTLC, and Evaluation of Hepatoprotective Activity on Fruit Pulp ofZiziphus\\njujubaMill. Cultivars in India\"], \"source\": [\"Evidence-Based\\nComplementary Altern.\"], \"year\": [\"2016\"], \"volume\": [\"2016\"], \"fpage\": [\"4758734\"], \"pub-id\": [\"10.1155/2016/4758734\"]}, {\"surname\": [\"Rao\", \"Rao\", \"Nitesh\", \"Raj\", \"Chandrasekhar\", \"Vijayan\", \"Dhanaraj\"], \"given-names\": [\"M.\", \"V.\", \"K.\", \"V.\", \"R.\", \"P.\", \"S.\"], \"article-title\": [\"In vitro and\\nin vivo hepatoprotective\\neffects of the total alkaloid fraction of Hygrophila auriculata leaves\"], \"source\": [\"Indian J. Pharmacol.\"], \"year\": [\"2010\"], \"volume\": [\"42\"], \"fpage\": [\"98\"], \"pub-id\": [\"10.4103/0253-7613.64500\"]}]",
    "glossary": {
        "acronym": [
            "CPFP",
            "CPFC",
            "CPFE",
            "CPFA",
            "CPFW",
            "DPPH",
            "ABTS",
            "NO",
            "GAE",
            "QE",
            "SGOT",
            "SGPT",
            "ALP",
            "\u03b3-GT",
            "CMC",
            "b.w.",
            "s.c"
        ],
        "definition": [
            "Clerodendrum paniculatum flower petroleum ether extract",
            "Clerodendrum paniculatum flower chloroform extract",
            "Clerodendrum paniculatum flower\nethyl acetate extract",
            "Clerodendrum paniculatum flower\nalcohol extract",
            "Clerodendrum paniculatum flower water\nextract",
            "2,2-diphenyl-2-picryl\nhydrazyl",
            "2,2-azino-bis\n(3-ethyl benzothiazoline-6-sufonic\nacid)",
            "nitric\noxide",
            "gallic\nacid equivalent",
            "quercetin equivalent",
            "serum glutamate oxaloacetate transaminase",
            "serum glutamate pyruvate transaminase",
            "alkaline phospahtase",
            "gamma glutamyl\ntransferase",
            "carboxy methyl cellulose",
            "body weight",
            "subcutaneous"
        ]
    },
    "references": {
        "introduction": {
            "pmid_ref": [
                "31358053",
                "31080832",
                "25646037",
                "23268465"
            ],
            "unknown_pub_ref": [
                0,
                1,
                2,
                3
            ],
            "figure_ref": [],
            "table_ref": [],
            "formula_ref": [],
            "box_ref": [],
            "code_ref": [],
            "quote_ref": [],
            "chem_ref": [],
            "supplementary_ref": [],
            "footnote_ref": [],
            "graphic_ref": [],
            "media_ref": []
        },
        "methods": {...},
        "results": {
            "pmid_ref": [
                "34151056",
                "34124456",
                "28442109",
                "29379645",
                "28962407"
            ],
            "unknown_pub_ref": [
                4
            ],
            "figure_ref": [
                0,
                1,
                2,
                3
            ],
            "table_ref": [
                0,
                1,
                2,
                3,
                4,
                5,
                6,
                7,
                7,
                8
            ],
            "formula_ref": [],
            "box_ref": [],
            "code_ref": [],
            "quote_ref": [],
            "chem_ref": [],
            "supplementary_ref": [],
            "footnote_ref": [],
            "graphic_ref": [],
            "media_ref": []
        },
        "discussion": {...},
        "conclusion": {...},
        "front": {...},
        "body": {...},
        "back": {...},
        "figure": {...},
        "table": {...},
        "formula": {...},
        "box": {...},
        "code": {...},
        "quote": {...},
        "chem": {...},
        "supplementary": {...},
        "footnote": {...}
    },
    "references_text": {
        "introduction": {
            "pmid_ref": [
                "1",
                "2",
                "4",
                "5"
            ],
            "unknown_pub_ref": [
                "3",
                "6",
                "7",
                "8"
            ],
            "figure_ref": [],
            "table_ref": [],
            "formula_ref": [],
            "box_ref": [],
            "code_ref": [],
            "quote_ref": [],
            "chem_ref": [],
            "supplementary_ref": [],
            "footnote_ref": [],
            "graphic_ref": [],
            "media_ref": []
        },
        "methods": {...},
        "results": {
            "pmid_ref": [
                "9",
                "10",
                "11",
                "12",
                "14"
            ],
            "unknown_pub_ref": [
                "13"
            ],
            "figure_ref": [
                "Figure 1",
                "Figure 2",
                "Figure 3",
                "Figure 4"
            ],
            "table_ref": [
                "Table 1",
                "Table 2",
                "Table 3",
                "Table 4",
                "Table 5",
                "Table 6",
                "Table 7",
                "Table 8",
                "Table 8",
                "Table 9"
            ],
            "formula_ref": [],
            "box_ref": [],
            "code_ref": [],
            "quote_ref": [],
            "chem_ref": [],
            "supplementary_ref": [],
            "footnote_ref": [],
            "graphic_ref": [],
            "media_ref": []
        },
        "discussion": {...},
        "conclusion": {...},
        "front": {...},
        "body": {...},
        "back": {...},
        "figure": {...},
        "table": {...},
        "formula": {...},
        "box": {...},
        "code": {...},
        "quote": {...},
        "chem": {...},
        "supplementary": {...},
        "footnote": {...}
    },
    "n_references": 43,
    "license": "CC BY-NC-ND",
    "retracted": "no",
    "last_updated": "2022-01-15 12:37:30",
    "citation": "ACS Omega. 2021 Sep 29; 6(40):26489-26498",
    "package_file": "oa_package/ca/94/PMC8515580.tar.gz"
}
```json

### Data Fields

"accession_id": The PMC ID of the article
"pmid":         The PubMed ID of the article
"introduction": List of <title> and <p> elements in <body>, sharing their root with a <title> containing "introduction" or "background".
"methods":      Same as introduction with "method" keyword.
"results":      Same as introduction with "result" keyword.
"discussion":   Same as introduction with "discussion" keyword.
"conclusion":   Same as introduction with "conclusion" keyword. 
"front":        List of <title> and <p> elements in <front> after everything else has been searched.
"body":         List of <title> and <p> elements in <body> after everything else has been searched.
"back":         List of <title> and <p> elements in <back> after everything else has been searched.
"figure":       List of <fig> elements of the article.
"table":        List of <table-wrap> and <array> elements of the article.
"formula":      List of <disp-formula> and <inline-formula> elements of the article.
"box":          List of <boxed-text> elements of the article.
"code":         List of <code> elements of the article.
"quote":        List of <disp-quote> and <speech> elements of the article.
"chem":         List of <chem-struct-wrap> elements of the article.
"supplementary": List of <supplementary-material> and <inline-supplementary-material> elements of the article.
"footnote":      List of <fn-group> and <table-wrap-foot> elements of the article.
"graphic":       List of <graphic> and <inline-graphic> elements of the article.
"media":         List of <media> and <inline-media> elements of the article.

"references": Lists of references in the order found in the corresponding categories
	"pmid_ref":  PMIDs of other articles.                                In text, replaced by " ##REF## "
	"unknown_pub_ref":  0-indexed idx of the article in "unknown_pub".   In text, replaced by " ##UREF## "
	"figure_ref":  0-indexed idx of the figures in "figure"              In text, replaced by " ##FIG## "
	"table_ref":   0-indexed idx of the tables in "table"                In text, replaced by " ##TAB## "
	"formula_ref": 0-indexed idx of the formulas in "formula"            In text, replaced by " ##FORMU## "
	"box_ref":     0-indexed idx of the box in "box"                     In text, replaced by " ##BOX## "
	"code_ref":    0-indexed idx of the code in "code"                   In text, replaced by " ##CODE## "
	"quote_ref":   0-indexed idx of the quote in "quote"                 In text, replaced by " ##QUOTE## "
	"chem_ref":    0-indexed idx of the chemical in "chem"               In text, replaced by " ##CHEM## "
	"supplementary_ref": 0-indexed idx of the figure in "supplementary"  In text, replaced by " ##SUPPL## "
	"footnote_ref": 0-indexed idx of the footnote in "footnote"          In text, replaced by " ##FOOTN## "
	"graphic_ref":  0-indexed idx of the graphics in "graphics"          In text, replaced by " ##GRAPH## "
	"media_ref":    0-indexed idx of the medias in "medias"              In text, replaced by " ##MEDIA## "
"references_text": For each reference in "references", the corresponding text that the reference keywords replaced.
"glossary": Glossary if found in the XML
"unknown_references": JSON of a dictionnary of each "tag":"text" for the reference that did not indicate a PMID
"n_references": Total number of references and unknown references
"license": The licence of the article
"retracted": If the article was retracted or not
"last_updated": Last update of the article
"citation": Citation of the article
"package_file": path to the folder containing the graphics and media files of the article


### Data Splits

[Needs More Information]

## Dataset Creation

### Curation Rationale

Internal references (figures, tables, ...) were found using specific tags. Deciding on those tags was done by testing and by looking in the documentation
for the different kind of possible usage.
Then, to split the article into introduction, methods, results, discussion and conclusion, specific keywords in titles were used. Because there are no rules
in this xml to tag those sections, finding the keyword seemed like the most reliable approach to do so. A drawback is that many section do not have those 
keywords in the titles but could be assimilated to those. However, the huge diversity in the titles makes it harder to label such sections. This could be the
work of further versions of this dataset.

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

[Needs More Information]

## Considerations for Using the Data

### Social Impact of Dataset

[Needs More Information]

### Discussion of Biases

The articles XML are similar accross collections. This means that if a certain collection handles the structure in unusual ways, the whole collection might not be as
well annotated than others. This concerns all the sections (intro, methods, ...), the external references (pmids) and the internal references (tables, figures, ...).
To illustrate that, references are sometime given as a range (e.g. 10-15). In that case, only reference 10 and 15 are linked. This could potentially be handled in a
future version.

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[Needs More Information]

### Licensing Information

https://www.ncbi.nlm.nih.gov/pmc/about/copyright/

Within the PMC Open Access Subset, there are three groupings:

Commercial Use Allowed - CC0, CC BY, CC BY-SA, CC BY-ND licenses
Non-Commercial Use Only - CC BY-NC, CC BY-NC-SA, CC BY-NC-ND licenses; and
Other - no machine-readable Creative Commons license, no license, or a custom license.

### Citation Information

[Needs More Information]