File size: 4,338 Bytes
484ef92 38d9370 484ef92 38d9370 484ef92 38d9370 484ef92 38d9370 484ef92 38d9370 484ef92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import pickle
import datasets
import numpy as np
_DESCRIPTION = """\
This dataset is used to train a decision Transformer for the CityLearn 2022 environment https://www.aicrowd.com/challenges/neurips-2022-citylearn-challenge
"""
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_BASE_URL = "https://huggingface.co/datasets/TobiTob/CityLearn/resolve/main/data"
_URLS = {
"sequences": f"{_BASE_URL}/sequences.pkl",
"halfcheetah-medium-replay-v2": f"{_BASE_URL}/halfcheetah-medium-replay-v2.pkl",
}
class DecisionTransformerGymDataset(datasets.GeneratorBasedBuilder):
"""The dataset comprises of tuples of (Observations, Actions, Rewards, Dones) sampled
by an expert policy for various continuous control tasks (halfcheetah, hopper, walker2d)"""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="sequences",
version=VERSION,
description="Test Data sampled from an expert policy in CityLearn environment",
),
datasets.BuilderConfig(
name="halfcheetah-medium-replay-v2",
version=VERSION,
description="Data sampled from an medium policy in the halfcheetah Mujoco environment",
),
]
def _info(self):
features = datasets.Features(
{
"observations": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
"actions": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
"rewards": datasets.Sequence(datasets.Value("float32")),
"dones": datasets.Sequence(datasets.Value("bool")),
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
# Here we define them above because they are different between the two configurations
features=features,
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir,
"split": "train",
},
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
with open(filepath, "rb") as f:
trajectories = pickle.load(f)
for idx, traj in enumerate(trajectories):
yield idx, {
"observations": traj["observations"],
"actions": traj["actions"],
"rewards": np.expand_dims(traj["rewards"], axis=1),
"dones": np.expand_dims(traj.get("dones", traj.get("terminals")), axis=1),
}
|