File size: 6,039 Bytes
b33ee2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67508ed
b33ee2f
 
 
67508ed
 
b33ee2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import pickle

import datasets
import numpy as np

_DESCRIPTION = """\
A subset of the D4RL dataset, used for training Decision Transformers
"""

_HOMEPAGE = "https://github.com/rail-berkeley/d4rl"

_LICENSE = "Apache-2.0"

# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_BASE_URL = "https://huggingface.co/datasets/TobiTob/CityLearn/resolve/main"
_URLS = {
    "halfcheetah-expert-v2": f"{_BASE_URL}/halfcheetah-expert-v2.pkl",
    "halfcheetah-medium-replay-v2": f"{_BASE_URL}/halfcheetah-medium-replay-v2.pkl",
    "test": f"{_BASE_URL}/test.pkl",
    "sequences": f"{_BASE_URL}/sequences.pkl",
}


class DecisionTransformerGymDataset(datasets.GeneratorBasedBuilder):
    """The dataset comprises of tuples of (Observations, Actions, Rewards, Dones) sampled
    by an expert policy for various continuous control tasks (halfcheetah, hopper, walker2d)"""

    VERSION = datasets.Version("1.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="halfcheetah-expert-v2",
            version=VERSION,
            description="Data sampled from an expert policy in the halfcheetah Mujoco environment",
        ),
        datasets.BuilderConfig(
            name="halfcheetah-medium-replay-v2",
            version=VERSION,
            description="Data sampled from an medium policy in the halfcheetah Mujoco environment",
        ),
        datasets.BuilderConfig(
            name="halfcheetah-medium-v2",
            version=VERSION,
            description="Data sampled from an medium policy in the halfcheetah Mujoco environment",
        ),
        datasets.BuilderConfig(
            name="hopper-expert-v2",
            version=VERSION,
            description="Data sampled from an expert policy in the hopper Mujoco environment",
        ),
        datasets.BuilderConfig(
            name="hopper-medium-replay-v2",
            version=VERSION,
            description="Data sampled from an medium policy in the hopper Mujoco environment",
        ),
        datasets.BuilderConfig(
            name="hopper-medium-v2",
            version=VERSION,
            description="Data sampled from an medium policy in the hopper Mujoco environment",
        ),
        datasets.BuilderConfig(
            name="walker2d-expert-v2",
            version=VERSION,
            description="Data sampled from an expert policy in the halfcheetah Mujoco environment",
        ),
        datasets.BuilderConfig(
            name="walker2d-medium-replay-v2",
            version=VERSION,
            description="Data sampled from an medium policy in the halfcheetah Mujoco environment",
        ),
        datasets.BuilderConfig(
            name="walker2d-medium-v2",
            version=VERSION,
            description="Data sampled from an medium policy in the halfcheetah Mujoco environment",
        ),
    ]

    def _info(self):

        features = datasets.Features(
            {
                "observations": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
                "actions": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
                "rewards": datasets.Sequence(datasets.Value("float32")),
                "dones": datasets.Sequence(datasets.Value("bool")),
                # These are the features of your dataset like images, labels ...
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            # Here we define them above because they are different between the two configurations
            features=features,
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir,
                    "split": "train",
                },
            )
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        with open(filepath, "rb") as f:
            trajectories = pickle.load(f)

            for idx, traj in enumerate(trajectories):
                yield idx, {
                    "observations": traj["observations"],
                    "actions": traj["actions"],
                    "rewards": np.expand_dims(traj["rewards"], axis=1),
                    "dones": np.expand_dims(traj.get("dones", traj.get("terminals")), axis=1),
                }