File size: 11,043 Bytes
9ca7c7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
"""
Data Processor for DeepSeek Children's Stories Model
Handles dataset loading, preprocessing, and tokenization for children's story generation
"""
import tiktoken
import os
import numpy as np
from datasets import load_dataset
from tqdm.auto import tqdm
import torch
from typing import Dict, List, Optional
def load_encoder_decoder():
"""Load the encoder and decoder for text processing"""
enc = tiktoken.get_encoding("gpt2")
return enc, enc
class DeepSeekDataProcessor:
def __init__(self, config=None):
# Initialize tokenizer with GPT-2 encoding
self.enc = tiktoken.get_encoding("gpt2")
# Special tokens for story structure (optimized for children's stories)
self.special_tokens = {
"story_start": "<|story|>",
"story_end": "</|story|>",
"prompt_start": "<|prompt|>",
"prompt_end": "</|prompt|>",
"moral_start": "<|moral|>",
"moral_end": "</|moral|>",
"character_start": "<|character|>",
"character_end": "</|character|>"
}
# Ensure data directory exists
self.data_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "data")
os.makedirs(self.data_dir, exist_ok=True)
print(f"Data directory: {self.data_dir}")
# Configuration for processing
self.max_length = 1024 # DeepSeek context window
self.min_length = 50 # Minimum story length
def preprocess_text(self, text: str) -> str:
"""Preprocess text for children's stories"""
# Basic text cleaning
text = text.lower() # Convert to lowercase for consistency
text = text.replace('\n', ' ') # Replace newlines with spaces
text = ' '.join(text.split()) # Normalize whitespace
# Remove any inappropriate content markers (basic filtering)
inappropriate_phrases = ['adult content', 'mature', 'explicit']
for phrase in inappropriate_phrases:
if phrase in text:
return ""
# Ensure the text is child-friendly
if len(text) < self.min_length:
return ""
return text
def extract_story_elements(self, example: Dict) -> Dict:
"""Extract story elements for better structure"""
prompt = self.preprocess_text(example.get('prompt', ''))
story = self.preprocess_text(example.get('text', ''))
# Extract potential moral or lesson
moral = ""
if 'moral' in example:
moral = self.preprocess_text(example['moral'])
elif 'lesson' in example:
moral = self.preprocess_text(example['lesson'])
# Extract main character if available
character = ""
if 'character' in example:
character = self.preprocess_text(example['character'])
return {
'prompt': prompt,
'story': story,
'moral': moral,
'character': character
}
def process(self, example: Dict) -> Dict:
"""Process a single example for DeepSeek model"""
# Extract story elements
elements = self.extract_story_elements(example)
# Skip if no valid content
if not elements['story'] or not elements['prompt']:
return {'ids': [], 'len': 0}
# Create structured text with special tokens
full_text = (
f"{self.special_tokens['prompt_start']} {elements['prompt']} {self.special_tokens['prompt_end']} "
)
# Add character information if available
if elements['character']:
full_text += f"{self.special_tokens['character_start']} {elements['character']} {self.special_tokens['character_end']} "
# Add the main story
full_text += f"{self.special_tokens['story_start']} {elements['story']} {self.special_tokens['story_end']}"
# Add moral if available
if elements['moral']:
full_text += f" {self.special_tokens['moral_start']} {elements['moral']} {self.special_tokens['moral_end']}"
# Tokenize with error handling
try:
ids = self.enc.encode_ordinary(full_text)
# Ensure the sequence isn't too long
if len(ids) > self.max_length:
ids = ids[:self.max_length]
# Skip if too short
if len(ids) < 20:
return {'ids': [], 'len': 0}
out = {'ids': ids, 'len': len(ids)}
return out
except Exception as e:
print(f"Error tokenizing text: {e}")
return {'ids': [], 'len': 0}
def prepare_dataset(self) -> Dict:
"""Prepare the Children Stories Collection dataset for DeepSeek training"""
# Load the Children Stories Collection dataset
print("Loading Children Stories Collection dataset...")
ds = load_dataset("ajibawa-2023/Children-Stories-Collection")
train_bin_path = os.path.join(self.data_dir, "train.bin")
val_bin_path = os.path.join(self.data_dir, "validation.bin")
finetune_bin_path = os.path.join(self.data_dir, "finetune.bin")
print(f"Checking for existing processed files...")
# Check if all files exist
if (os.path.exists(train_bin_path) and
os.path.exists(val_bin_path) and
os.path.exists(finetune_bin_path)):
print("Found existing processed files!")
print(f"Train file: {os.path.getsize(train_bin_path) / (1024*1024):.2f} MB")
print(f"Validation file: {os.path.getsize(val_bin_path) / (1024*1024):.2f} MB")
print(f"Finetune file: {os.path.getsize(finetune_bin_path) / (1024*1024):.2f} MB")
return {
"train": train_bin_path,
"validation": val_bin_path,
"finetune": finetune_bin_path
}
print("Processing dataset...")
# Filter out examples that are too short or too long
def filter_by_length(example):
text_length = len(example.get('text', ''))
return self.min_length <= text_length <= 2000 # Reasonable length for children's stories
ds = ds.filter(filter_by_length)
print(f"After filtering: {len(ds['train'])} examples")
# Split the dataset into train, validation, and finetune sets
train_val_test = ds["train"].train_test_split(test_size=0.2, seed=42)
val_finetune = train_val_test["test"].train_test_split(test_size=0.5, seed=42)
# Create a new dataset dictionary with all splits
ds = {
"train": train_val_test["train"],
"validation": val_finetune["train"],
"finetune": val_finetune["test"]
}
print(f"Dataset split sizes:")
print(f"Training set: {len(ds['train'])} examples")
print(f"Validation set: {len(ds['validation'])} examples")
print(f"Finetune set: {len(ds['finetune'])} examples")
# Process each split
for split_name, split_data in ds.items():
print(f"\nProcessing {split_name} split...")
# Process the data
tokenized = split_data.map(
self.process,
remove_columns=['text', 'prompt', 'text_token_length'],
desc=f"tokenizing {split_name} split",
num_proc=8,
)
# Filter out empty sequences
tokenized = tokenized.filter(lambda x: x['len'] > 0)
print(f"After processing: {len(tokenized)} valid examples")
# Save to binary file
filename = os.path.join(self.data_dir, f"{split_name}.bin")
print(f"Saving {split_name} split to: {filename}")
# Calculate total length
arr_len = np.sum(tokenized['len'], dtype=np.uint64)
dtype = np.uint16
arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,))
total_batches = 1024
idx = 0
for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'):
batch = tokenized.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy')
arr_batch = np.concatenate(batch['ids'])
arr[idx : idx + len(arr_batch)] = arr_batch
idx += len(arr_batch)
arr.flush()
# Verify file was created
if os.path.exists(filename):
print(f"Successfully created {filename}")
print(f"File size: {os.path.getsize(filename) / (1024*1024):.2f} MB")
else:
raise RuntimeError(f"Failed to create {filename}")
return {
"train": train_bin_path,
"validation": val_bin_path,
"finetune": finetune_bin_path
}
def load_binary_data(self, filepath: str) -> torch.Tensor:
"""Load binary data file as tensor"""
try:
data = np.memmap(filepath, dtype=np.uint16, mode='r')
return torch.from_numpy(data.copy())
except Exception as e:
print(f"Error loading data from {filepath}: {e}")
raise
def get_batch(self, data: torch.Tensor, batch_size: int, block_size: int) -> tuple:
"""Get a batch of data for training"""
# Generate random indices
ix = torch.randint(len(data) - block_size, (batch_size,))
# Get input sequences
x = torch.stack([data[i:i+block_size].long() for i in ix])
# Get target sequences (shifted by 1)
y = torch.stack([data[i+1:i+1+block_size].long() for i in ix])
return x, y
def decode_tokens(self, token_ids: List[int]) -> str:
"""Decode token IDs back to text"""
try:
return self.enc.decode(token_ids)
except Exception as e:
print(f"Error decoding tokens: {e}")
return ""
def encode_text(self, text: str) -> List[int]:
"""Encode text to token IDs"""
try:
return self.enc.encode_ordinary(text)
except Exception as e:
print(f"Error encoding text: {e}")
return []
def main():
"""Main function to process the dataset"""
print("DeepSeek Children's Stories Data Processor")
print("=" * 50)
processor = DeepSeekDataProcessor()
processor.prepare_dataset()
print("\nData processing completed successfully!")
print("Files created:")
print("- src/data/train.bin")
print("- src/data/validation.bin")
print("- src/data/finetune.bin")
if __name__ == "__main__":
main() |