File size: 5,357 Bytes
0780006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e115753
0780006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b22912
0780006
 
 
6b22912
 
0780006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e7038
0780006
f1e7038
0780006
 
f1e7038
0780006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54f121
 
0780006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""TODO(squad_es): Add a description here."""


import json

import datasets


# TODO(squad_es): BibTeX citation
_CITATION = """\
@article{2016arXiv160605250R,
       author = {Casimiro Pio , Carrino and  Marta R. , Costa-jussa and  Jose A. R. , Fonollosa},
        title = "{Automatic Spanish Translation of the SQuAD Dataset for Multilingual
Question Answering}",
      journal = {arXiv e-prints},
         year = 2019,
          eid = {arXiv:1912.05200v1},
        pages = {arXiv:1912.05200v1},
archivePrefix = {arXiv},
       eprint = {1912.05200v2},
}
"""

# TODO(squad_es_v1):
_DESCRIPTION = """\
automatic translation of the Stanford Question Answering Dataset (SQuAD) v2 into Spanish
"""

_URL = "https://huggingface.co/datasets/TheTung/squad_es_v2/resolve/main/"
_URLS_FULL = {
    "train": _URL + "train-v2.0-es.json",
    "dev": _URL + "dev-v2.0-es.json",
}
_URLS_SMALL = {
    "train": _URL + "train-v2.0-es_small.json",
    "dev": _URL + "dev-v2.0-es_small.json",
}


class SquadEsConfig(datasets.BuilderConfig):
    """BuilderConfig for SQUADEsV2."""

    def __init__(self, **kwargs):
        """BuilderConfig for SQUADEsV2.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(SquadEsConfig, self).__init__(**kwargs)


class SquadEs(datasets.GeneratorBasedBuilder):
    """TODO(squad_es): Short description of my dataset."""

    # TODO(squad_es): Set up version.
    VERSION = datasets.Version("0.1.0")

    BUILDER_CONFIGS = [
        SquadEsConfig(
            name="full",
            version=datasets.Version("2.0.0", ""),
            description="Plain text Spanish squad version 1",
        ),
        SquadEsConfig(
            name="small",
            version=datasets.Version("2.0.0", ""),
            description="Plain text Spanish squad version 2",
        ),
    ]

    def _info(self):
        # TODO(squad_es): Specifies the datasets.DatasetInfo object
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                {
                    # These are the features of your dataset like images, labels ...
                    "id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "context": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answers": datasets.features.Sequence(
                        {
                            "text": datasets.Value("string"),
                            "answer_start": datasets.Value("int32"),
                        }
                    ),
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO(squad_es): Downloads the data and defines the splits
        # dl_manager is a datasets.download.DownloadManager that can be used to

        # download and extract URLs
        if self.config.name == "full":
            dl_dir = dl_manager.download_and_extract(_URLS_FULL)
        elif self.config.name == "small":
            dl_dir = dl_manager.download_and_extract(_URLS_SMALL)
        else:
            raise Exception("version or config name does not match any existing one")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": dl_dir["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": dl_dir["dev"]},
            ),
        ]

    def _generate_examples(self, filepath):
        """Yields examples."""
        # TODO(squad_es): Yields (key, example) tuples from the dataset
        print(f"opening data from {filepath}")
        with open(filepath, encoding="utf-8") as f:
            data = json.load(f)
            for example in data["data"]:
                title = example.get("title", "").strip()
                for paragraph in example["paragraphs"]:
                    context = paragraph["context"].strip()
                    for qa in paragraph["qas"]:
                        question = qa["question"].strip()
                        id_ = qa["id"]

                        answer_starts = [answer["answer_start"] for answer in qa["answers"]]
                        answers = [answer["text"].strip() for answer in qa["answers"]]

                        yield id_, {
                            "title": title,
                            "context": context,
                            "question": question,
                            "id": id_,
                            "answers": {
                                "answer_start": answer_starts,
                                "text": answers,
                            },
                        }