File size: 47,915 Bytes
e505dda 45762b5 cdd04b6 1ac8906 e505dda 6f159ac e505dda dc5f674 6f159ac e505dda 1ac8906 66f22a0 e505dda b5b31bd dd394ce e505dda 37bd07b 1ac8906 6f159ac e505dda 6f159ac e505dda 8fb2db7 6ce6de4 4c8703a e505dda 4c8703a dc5f674 6ce6de4 8fb2db7 dc5f674 6ce6de4 8fb2db7 dc5f674 8fb2db7 6f159ac e505dda eb4ca13 e505dda dc5f674 c847850 e505dda 7b8cfd8 6ce6de4 4c8703a e505dda dc5f674 e505dda 4c8703a 6ce6de4 37bd07b 4c8703a 6ce6de4 37bd07b 4c8703a e505dda 4c8703a e505dda 4c8703a e505dda 4c8703a e505dda 37bd07b e505dda 6ce6de4 e505dda dc5f674 6ce6de4 e505dda dc5f674 6ce6de4 e505dda 1929b7b e505dda 6ce6de4 e505dda 050f4ad e505dda c847850 e505dda 6f159ac e505dda 6ce6de4 37bd07b 6f159ac 6ce6de4 37bd07b 6f159ac 456ff14 6f159ac e505dda 6f159ac e505dda 37bd07b e505dda 37bd07b e505dda edc3150 e505dda 37bd07b e505dda 1f8c018 e505dda 1f8c018 e505dda dfd56af e505dda dfd56af e505dda dfd56af e505dda 1f8c018 e505dda 1f8c018 e505dda dfd56af e505dda 1f8c018 e505dda dfd56af e505dda 37bd07b e505dda c847850 e505dda 1f8c018 e505dda 37bd07b 87b6ac9 e505dda edc3150 e505dda 95878ab e505dda 87b6ac9 e505dda 87b6ac9 e505dda edc3150 e505dda c847850 87b6ac9 e505dda 87b6ac9 e505dda 87b6ac9 e505dda 0a7dd8f e505dda c847850 e505dda ab232bf e505dda 87b6ac9 e505dda 87b6ac9 e505dda 0a7dd8f e505dda c847850 e505dda ab232bf e505dda c847850 e505dda aa4d014 e505dda cdd04b6 2aa9830 aa4d014 2aa9830 fd0f924 2aa9830 4872d93 2aa9830 e505dda 6f159ac e505dda 6f159ac e505dda c847850 e505dda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 |
from IPython.display import clear_output
from subprocess import call, getoutput
from IPython.display import display
import ipywidgets as widgets
import io
from PIL import Image, ImageDraw
import fileinput
import time
import os
from os import listdir
from os.path import isfile
from tqdm import tqdm
import gdown
import random
import sys
import cv2
from io import BytesIO
import requests
from collections import defaultdict
from math import log, sqrt
import numpy as np
from subprocess import check_output
from urllib.request import urlopen, Request
import tempfile
from tqdm import tqdm
def Deps(force_reinstall):
if not force_reinstall and os.path.exists('/usr/local/lib/python3.9/dist-packages/safetensors'):
ntbk()
print('[1;32mModules and notebooks updated, dependencies already installed')
else:
call("pip install --root-user-action=ignore --no-deps -q accelerate==0.12.0", shell=True, stdout=open('/dev/null', 'w'))
if not os.path.exists('/usr/local/lib/python3.9/dist-packages/safetensors'):
os.chdir('/usr/local/lib/python3.9/dist-packages')
call("rm -r torch torch-1.12.1+cu116.dist-info torchaudio* torchvision* PIL Pillow* transformers* numpy* gdown*", shell=True, stdout=open('/dev/null', 'w'))
ntbk()
if not os.path.exists('/models'):
call('mkdir /models', shell=True)
if not os.path.exists('/notebooks/models'):
call('ln -s /models /notebooks', shell=True)
if os.path.exists('/deps'):
call("rm -r /deps", shell=True)
call('mkdir /deps', shell=True)
if not os.path.exists('cache'):
call('mkdir cache', shell=True)
os.chdir('/deps')
call('wget -q -i https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dependencies/aptdeps.txt', shell=True)
call('dpkg -i *.deb', shell=True, stdout=open('/dev/null', 'w'))
depsinst("https://huggingface.co/TheLastBen/dependencies/resolve/main/ppsdeps.tar.zst", "/deps/ppsdeps.tar.zst", hash_prefix=None, progress=True)
call('tar -C / --zstd -xf ppsdeps.tar.zst', shell=True, stdout=open('/dev/null', 'w'))
call("sed -i 's@~/.cache@/notebooks/cache@' /usr/local/lib/python3.9/dist-packages/transformers/utils/hub.py", shell=True)
os.chdir('/notebooks')
call("git clone --depth 1 -q --branch main https://github.com/TheLastBen/diffusers /diffusers", shell=True, stdout=open('/dev/null', 'w'))
call("pip install --root-user-action=ignore -qq gradio==3.29.0", shell=True, stdout=open('/dev/null', 'w'))
if not os.path.exists('/notebooks/diffusers'):
call('ln -s /diffusers /notebooks', shell=True)
call("rm -r /deps", shell=True)
os.chdir('/notebooks')
clear_output()
done()
def depsinst(url, dst, hash_prefix=None, progress=True):
file_size = None
req = Request(url, headers={"User-Agent": "torch.hub"})
u = urlopen(req)
meta = u.info()
if hasattr(meta, 'getheaders'):
content_length = meta.getheaders("Content-Length")
else:
content_length = meta.get_all("Content-Length")
if content_length is not None and len(content_length) > 0:
file_size = int(content_length[0])
with tqdm(total=file_size, disable=not progress, mininterval=0.5,
bar_format='Installing dependencies |{bar:20}| {percentage:3.0f}%') as pbar:
with open(dst, "wb") as f:
while True:
buffer = u.read(8192)
if len(buffer) == 0:
break
f.write(buffer)
pbar.update(len(buffer))
f.close()
def ntbk():
os.chdir('/notebooks')
if not os.path.exists('Latest_Notebooks'):
call('mkdir Latest_Notebooks', shell=True)
else:
call('rm -r Latest_Notebooks', shell=True)
call('mkdir Latest_Notebooks', shell=True)
os.chdir('/notebooks/Latest_Notebooks')
call('wget -q -i https://huggingface.co/datasets/TheLastBen/PPS/raw/main/Notebooks.txt', shell=True)
call('rm Notebooks.txt', shell=True)
os.chdir('/notebooks')
def downloadmodel_hfv2(Path_to_HuggingFace):
import wget
if os.path.exists('/models/stable-diffusion-custom'):
call("rm -r /models/stable-diffusion-custom", shell=True)
clear_output()
if os.path.exists('/notebooks/Fast-Dreambooth/token.txt'):
with open("/notebooks/Fast-Dreambooth/token.txt") as f:
token = f.read()
authe=f'https://USER:{token}@'
else:
authe="https://"
clear_output()
call("mkdir /models/stable-diffusion-custom", shell=True)
os.chdir("/models/stable-diffusion-custom")
call("git init", shell=True)
call("git lfs install --system --skip-repo", shell=True)
call('git remote add -f origin '+authe+'huggingface.co/'+Path_to_HuggingFace, shell=True)
call("git config core.sparsecheckout true", shell=True)
call('echo -e "\nscheduler\ntext_encoder\ntokenizer\nunet\nvae\nfeature_extractor\nmodel_index.json\n!*.safetensors" > .git/info/sparse-checkout', shell=True)
call("git pull origin main", shell=True)
if os.path.exists('unet/diffusion_pytorch_model.bin'):
call("rm -r .git", shell=True)
os.chdir('/notebooks')
clear_output()
done()
while not os.path.exists('/models/stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
print('[1;31mCheck the link you provided')
os.chdir('/notebooks')
time.sleep(5)
def downloadmodel_pthv2(Model_Path, safetensors):
sftnsr=""
if safetensors:
sftnsr="--from_safetensors"
import wget
os.chdir('/models')
clear_output()
if os.path.exists(str(Model_Path)):
wget.download('https://github.com/TheLastBen/fast-stable-diffusion/raw/main/Dreambooth/det.py')
print('[1;33mDetecting model version...')
Custom_Model_Version=check_output('python det.py '+sftnsr+' --MODEL_PATH '+Model_Path, shell=True).decode('utf-8').replace('\n', '')
clear_output()
print('[1;32m'+Custom_Model_Version+' Detected')
call('rm det.py', shell=True)
if Custom_Model_Version=='V2.1-512px':
call('wget -q -O convertodiffv2.py https://github.com/TheLastBen/fast-stable-diffusion/raw/main/Dreambooth/convertodiffv2.py', shell=True)
call('python convertodiffv2.py '+Model_Path+' stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1-base '+sftnsr, shell=True)
elif Custom_Model_Version=='V2.1-768px':
call('wget -q -O convertodiffv2.py https://github.com/TheLastBen/fast-stable-diffusion/raw/main/Dreambooth/convertodiffv2-768.py', shell=True)
call('python convertodiffv2.py '+Model_Path+' stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1 '+sftnsr, shell=True)
call('rm convertodiffv2.py', shell=True)
if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
os.chdir('/notebooks')
clear_output()
done()
while not os.path.exists('/models/stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
print('[1;31mConversion error')
os.chdir('/notebooks')
time.sleep(5)
else:
while not os.path.exists(str(Model_Path)):
print('[1;31mWrong path, use the file explorer to copy the path')
os.chdir('/notebooks')
time.sleep(5)
def downloadmodel_lnkv2(Model_Link, safetensors):
sftnsr=""
if not safetensors:
modelnm="model.ckpt"
else:
modelnm="model.safetensors"
sftnsr="--from_safetensors"
import wget
os.chdir('/models')
call("gdown --fuzzy " +Model_Link+ " -O /models/"+modelnm, shell=True)
if os.path.exists("/models/"+modelnm):
if os.path.getsize("/models/"+modelnm) > 1810671599:
wget.download('https://github.com/TheLastBen/fast-stable-diffusion/raw/main/Dreambooth/det.py')
print('[1;33mDetecting model version...')
Custom_Model_Version=check_output('python det.py '+sftnsr+' --MODEL_PATH '+modelnm, shell=True).decode('utf-8').replace('\n', '')
clear_output()
print('[1;32m'+Custom_Model_Version+' Detected')
call('rm det.py', shell=True)
if Custom_Model_Version=='V2.1-512px':
call('wget -q -O convertodiffv2.py https://github.com/TheLastBen/fast-stable-diffusion/raw/main/Dreambooth/convertodiffv2.py', shell=True)
call('python convertodiffv2.py /models/'+modelnm+' stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1-base '+sftnsr, shell=True)
elif Custom_Model_Version=='V2.1-768px':
call('wget -q -O convertodiffv2.py https://github.com/TheLastBen/fast-stable-diffusion/raw/main/Dreambooth/convertodiffv2-768.py', shell=True)
call('python convertodiffv2.py /models/'+modelnm+' stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1 '+sftnsr, shell=True)
call('rm convertodiffv2.py', shell=True)
if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
call('rm /models/'+modelnm, shell=True)
os.chdir('/notebooks')
clear_output()
done()
else:
while not os.path.exists('/models/stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
print('[1;31mConversion error')
os.chdir('/notebooks')
time.sleep(5)
else:
while os.path.getsize("/models/"+modelnm) < 1810671599:
print('[1;31mWrong link, check that the link is valid')
os.chdir('/notebooks')
time.sleep(5)
def dlv2(Path_to_HuggingFace, Model_Path, Model_Link, Model_Version, safetensors):
if Path_to_HuggingFace != "":
downloadmodel_hfv2(Path_to_HuggingFace)
MODEL_NAMEv2="/models/stable-diffusion-custom"
elif Model_Path !="":
downloadmodel_pthv2(Model_Path, safetensors)
MODEL_NAMEv2="/models/stable-diffusion-custom"
elif Model_Link !="":
downloadmodel_lnkv2(Model_Link, safetensors)
MODEL_NAMEv2="/models/stable-diffusion-custom"
else:
if Model_Version=="512":
MODEL_NAMEv2="/datasets/stable-diffusion-v2-1-base-diffusers/stable-diffusion-2-1-base"
print('[1;32mUsing the original V2-512 model')
elif Model_Version=="768":
MODEL_NAMEv2="/datasets/stable-diffusion-v2-1/stable-diffusion-2-1"
print('[1;32mUsing the original V2-768 model')
else:
MODEL_NAMEv2=""
print('[1;31mWrong model version')
return MODEL_NAMEv2
def sessv2(Session_Name, Session_Link_optional, MODEL_NAMEv2):
import gdown
import wget
os.chdir('/notebooks')
PT=""
while Session_Name=="":
print('[1;31mInput the Session Name:')
Session_Name=input("")
Session_Name=Session_Name.replace(" ","_")
WORKSPACE='/notebooks/Fast-Dreambooth'
if Session_Link_optional !="":
print('[1;33mDownloading session...')
if Session_Link_optional != "":
if not os.path.exists(str(WORKSPACE+'/Sessions')):
call("mkdir -p " +WORKSPACE+ "/Sessions", shell=True)
time.sleep(1)
os.chdir(WORKSPACE+'/Sessions')
gdown.download_folder(url=Session_Link_optional, output=Session_Name, quiet=True, remaining_ok=True, use_cookies=False)
os.chdir(Session_Name)
call("rm -r " +instance_images, shell=True)
call("unzip " +instance_images.zip, shell=True, stdout=open('/dev/null', 'w'))
call("rm -r " +concept_images, shell=True)
call("unzip " +concept_images.zip, shell=True, stdout=open('/dev/null', 'w'))
call("rm -r " +captions, shell=True)
call("unzip " +captions.zip, shell=True, stdout=open('/dev/null', 'w'))
os.chdir('/notebooks')
clear_output()
INSTANCE_NAME=Session_Name
OUTPUT_DIR="/models/"+Session_Name
SESSION_DIR=WORKSPACE+"/Sessions/"+Session_Name
CONCEPT_DIR=SESSION_DIR+"/concept_images"
INSTANCE_DIR=SESSION_DIR+"/instance_images"
CAPTIONS_DIR=SESSION_DIR+'/captions'
MDLPTH=str(SESSION_DIR+"/"+Session_Name+'.ckpt')
resumev2=False
if os.path.exists(str(SESSION_DIR)):
mdls=[ckpt for ckpt in listdir(SESSION_DIR) if ckpt.split(".")[-1]=="ckpt"]
if not os.path.exists(MDLPTH) and '.ckpt' in str(mdls):
def f(n):
k=0
for i in mdls:
if k==n:
call('mv '+SESSION_DIR+'/'+i+' '+MDLPTH, shell=True)
k=k+1
k=0
print('[1;33mNo final checkpoint model found, select which intermediary checkpoint to use, enter only the number, (000 to skip):\n[1;34m')
for i in mdls:
print(str(k)+'- '+i)
k=k+1
n=input()
while int(n)>k-1:
n=input()
if n!="000":
f(int(n))
print('[1;32mUsing the model '+ mdls[int(n)]+" ...")
time.sleep(4)
else:
print('[1;32mSkipping the intermediary checkpoints.')
if os.path.exists(str(SESSION_DIR)) and not os.path.exists(MDLPTH):
print('[1;32mLoading session with no previous model, using the original model or the custom downloaded model')
if MODEL_NAMEv2=="":
print('[1;31mNo model found, use the "Model Download" cell to download a model.')
else:
print('[1;32mSession Loaded, proceed to uploading instance images')
elif os.path.exists(MDLPTH):
print('[1;32mSession found, loading the trained model ...')
wget.download('https://github.com/TheLastBen/fast-stable-diffusion/raw/main/Dreambooth/det.py')
print('[1;33mDetecting model version...')
Model_Version=check_output('python det.py --MODEL_PATH '+MDLPTH, shell=True).decode('utf-8').replace('\n', '')
clear_output()
print('[1;32m'+Model_Version+' Detected')
call('rm det.py', shell=True)
if Model_Version=='V2.1-512px':
call('wget -q -O convertodiff.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py', shell=True)
call('python convertodiff.py '+MDLPTH+' '+OUTPUT_DIR+' --v2 --reference_model stabilityai/stable-diffusion-2-1-base', shell=True)
elif Model_Version=='V2.1-768px':
call('wget -q -O convertodiff.py https://github.com/TheLastBen/fast-stable-diffusion/raw/main/Dreambooth/convertodiffv2-768.py', shell=True)
call('python convertodiff.py '+MDLPTH+' '+OUTPUT_DIR+' --v2 --reference_model stabilityai/stable-diffusion-2-1', shell=True)
clear_output()
call('rm convertodiff.py', shell=True)
if os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
resumev2=True
clear_output()
print('[1;32mSession loaded.')
else:
print('[1;31mConversion error, if the error persists, remove the CKPT file from the current session folder')
elif not os.path.exists(str(SESSION_DIR)):
call('mkdir -p '+INSTANCE_DIR, shell=True)
print('[1;32mCreating session...')
if MODEL_NAMEv2=="":
print('[1;31mNo model found, use the "Model Download" cell to download a model.')
else:
print('[1;32mSession created, proceed to uploading instance images')
return PT, WORKSPACE, Session_Name, INSTANCE_NAME, OUTPUT_DIR, SESSION_DIR, CONCEPT_DIR, INSTANCE_DIR, CAPTIONS_DIR, MDLPTH, MODEL_NAMEv2, resumev2
def done():
done = widgets.Button(
description='Done!',
disabled=True,
button_style='success',
tooltip='',
icon='check'
)
display(done)
def uplder(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, ren):
if os.path.exists(INSTANCE_DIR+"/.ipynb_checkpoints"):
call('rm -r '+INSTANCE_DIR+'/.ipynb_checkpoints', shell=True)
uploader = widgets.FileUpload(description="Choose images",accept='image/*', multiple=True)
Upload = widgets.Button(
description='Upload',
disabled=False,
button_style='info',
tooltip='Click to upload the chosen instance images',
icon=''
)
def up(Upload):
with out:
uploader.close()
Upload.close()
upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader, ren)
done()
out=widgets.Output()
if IMAGES_FOLDER_OPTIONAL=="":
Upload.on_click(up)
display(uploader, Upload, out)
else:
upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader, ren)
done()
def upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader, ren):
if Remove_existing_instance_images:
if os.path.exists(str(INSTANCE_DIR)):
call("rm -r " +INSTANCE_DIR, shell=True)
if os.path.exists(str(CAPTIONS_DIR)):
call("rm -r " +CAPTIONS_DIR, shell=True)
if not os.path.exists(str(INSTANCE_DIR)):
call("mkdir -p " +INSTANCE_DIR, shell=True)
if not os.path.exists(str(CAPTIONS_DIR)):
call("mkdir -p " +CAPTIONS_DIR, shell=True)
if IMAGES_FOLDER_OPTIONAL !="":
if os.path.exists(IMAGES_FOLDER_OPTIONAL+"/.ipynb_checkpoints"):
call('rm -r '+IMAGES_FOLDER_OPTIONAL+'/.ipynb_checkpoints', shell=True)
if any(file.endswith('.{}'.format('txt')) for file in os.listdir(IMAGES_FOLDER_OPTIONAL)):
call('mv '+IMAGES_FOLDER_OPTIONAL+'/*.txt '+CAPTIONS_DIR, shell=True)
if Crop_images:
os.chdir(str(IMAGES_FOLDER_OPTIONAL))
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
os.chdir('/notebooks')
for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
extension = filename.split(".")[-1]
identifier=filename.split(".")[0]
new_path_with_file = os.path.join(INSTANCE_DIR, filename)
file = Image.open(IMAGES_FOLDER_OPTIONAL+"/"+filename)
width, height = file.size
image = file
if file.size !=(Crop_size, Crop_size):
image=crop_image(file, Crop_size)
if extension.upper()=="JPG" or extension.upper()=="jpg":
image[0] = image[0].convert("RGB")
image[0].save(new_path_with_file, format="JPEG", quality = 100)
else:
image[0].save(new_path_with_file, format=extension.upper())
else:
call("cp \'"+IMAGES_FOLDER_OPTIONAL+"/"+filename+"\' "+INSTANCE_DIR, shell=True)
else:
for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
call("cp -r " +IMAGES_FOLDER_OPTIONAL+"/. " +INSTANCE_DIR, shell=True)
elif IMAGES_FOLDER_OPTIONAL =="":
up=""
for file in uploader.value:
filename = file['name']
if filename.split(".")[-1]=="txt":
with open(CAPTIONS_DIR+'/'+filename, 'w') as f:
f.write(file['content'].decode())
up=[file for file in uploader.value if filename.split(".")[-1]!="txt"]
if Crop_images:
for file in tqdm(up, bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
filename = file['name']
img = Image.open(io.BytesIO(file['content']))
extension = filename.split(".")[-1]
identifier=filename.split(".")[0]
if extension.upper()=="JPG" or extension.upper()=="jpg":
img=img.convert("RGB")
img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100)
else:
img.save(INSTANCE_DIR+"/"+filename, format=extension.upper())
new_path_with_file = os.path.join(INSTANCE_DIR, filename)
file = Image.open(new_path_with_file)
width, height = file.size
image = img
if file.size !=(Crop_size, Crop_size):
image=crop_image(file, Crop_size)
if extension.upper()=="JPG" or extension.upper()=="jpg":
image[0].save(new_path_with_file, format="JPEG", quality = 100)
else:
image[0].save(new_path_with_file, format=extension.upper())
else:
for file in tqdm(uploader.value, bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
filename = file['name']
img = Image.open(io.BytesIO(file['content']))
extension = filename.split(".")[-1]
identifier=filename.split(".")[0]
if extension.upper()=="JPG" or extension.upper()=="jpg":
img=img.convert("RGB")
img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100)
else:
img.save(INSTANCE_DIR+"/"+filename, format=extension.upper())
if ren:
i=0
for filename in tqdm(os.listdir(INSTANCE_DIR), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Renamed'):
extension = filename.split(".")[-1]
identifier=filename.split(".")[0]
new_path_with_file = os.path.join(INSTANCE_DIR, "conceptimagedb"+str(i)+"."+extension)
call('mv "'+os.path.join(INSTANCE_DIR,filename)+'" "'+new_path_with_file+'"', shell=True)
i=i+1
os.chdir(INSTANCE_DIR)
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
os.chdir(CAPTIONS_DIR)
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
os.chdir('/notebooks')
def caption(CAPTIONS_DIR, INSTANCE_DIR):
paths=""
out=""
widgets_l=""
clear_output()
def Caption(path):
if path!="Select an instance image to caption":
name = os.path.splitext(os.path.basename(path))[0]
ext=os.path.splitext(os.path.basename(path))[-1][1:]
if ext=="jpg" or "JPG":
ext="JPEG"
if os.path.exists(CAPTIONS_DIR+"/"+name + '.txt'):
with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f:
text = f.read()
else:
with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f:
f.write("")
with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f:
text = f.read()
img=Image.open(os.path.join(INSTANCE_DIR,path))
img=img.convert("RGB")
img=img.resize((420, 420))
image_bytes = BytesIO()
img.save(image_bytes, format=ext, qualiy=10)
image_bytes.seek(0)
image_data = image_bytes.read()
img= image_data
image = widgets.Image(
value=img,
width=420,
height=420
)
text_area = widgets.Textarea(value=text, description='', disabled=False, layout={'width': '300px', 'height': '120px'})
def update_text(text):
with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f:
f.write(text)
button = widgets.Button(description='Save', button_style='success')
button.on_click(lambda b: update_text(text_area.value))
return widgets.VBox([widgets.HBox([image, text_area, button])])
paths = os.listdir(INSTANCE_DIR)
widgets_l = widgets.Select(options=["Select an instance image to caption"]+paths, rows=25)
out = widgets.Output()
def click(change):
with out:
out.clear_output()
display(Caption(change.new))
widgets_l.observe(click, names='value')
display(widgets.HBox([widgets_l, out]))
def dbtrainv2(Resume_Training, UNet_Training_Steps, UNet_Learning_Rate, Text_Encoder_Training_Steps, Text_Encoder_Concept_Training_Steps, Text_Encoder_Learning_Rate, Offset_Noise, Resolution, MODEL_NAMEv2, SESSION_DIR, INSTANCE_DIR, CONCEPT_DIR, CAPTIONS_DIR, External_Captions, INSTANCE_NAME, Session_Name, OUTPUT_DIR, PT, resumev2, Save_Checkpoint_Every_n_Steps, Start_saving_from_the_step, Save_Checkpoint_Every):
if os.path.exists(INSTANCE_DIR+"/.ipynb_checkpoints"):
call('rm -r '+INSTANCE_DIR+'/.ipynb_checkpoints', shell=True)
if os.path.exists(CONCEPT_DIR+"/.ipynb_checkpoints"):
call('rm -r '+CONCEPT_DIR+'/.ipynb_checkpoints', shell=True)
if os.path.exists(CAPTIONS_DIR+"/.ipynb_checkpoints"):
call('rm -r '+CAPTIONS_DIR+'/.ipynb_checkpoints', shell=True)
if resumev2 and not Resume_Training:
print('[1;31mOverwrite your previously trained model ?, answering "yes" will train a new model, answering "no" will resumev2 the training of the previous model? yes or no ?[0m')
while True:
ansres=input('')
if ansres=='no':
Resume_Training = True
resumev2= False
break
elif ansres=='yes':
Resume_Training = False
resumev2= False
break
while not Resume_Training and not os.path.exists(MODEL_NAMEv2+'/unet/diffusion_pytorch_model.bin'):
print('[1;31mNo model found, use the "Model Download" cell to download a model.')
time.sleep(5)
MODELT_NAME=MODEL_NAMEv2
Seed=random.randint(1, 999999)
ofstnse=""
if Offset_Noise:
ofstnse="--offset_noise"
extrnlcptn=""
if External_Captions:
extrnlcptn="--external_captions"
precision="fp16"
resuming=""
if Resume_Training and os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
MODELT_NAME=OUTPUT_DIR
print('[1;32mResuming Training...[0m')
resuming="Yes"
elif Resume_Training and not os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
print('[1;31mPrevious model not found, training a new model...[0m')
MODELT_NAME=MODEL_NAMEv2
while MODEL_NAMEv2=="":
print('[1;31mNo model found, use the "Model Download" cell to download a model.')
time.sleep(5)
trnonltxt=""
if UNet_Training_Steps==0:
trnonltxt="--train_only_text_encoder"
Enable_text_encoder_training= True
Enable_Text_Encoder_Concept_Training= True
if Text_Encoder_Training_Steps==0:
Enable_text_encoder_training= False
else:
stptxt=Text_Encoder_Training_Steps
if Text_Encoder_Concept_Training_Steps==0:
Enable_Text_Encoder_Concept_Training= False
else:
stptxtc=Text_Encoder_Concept_Training_Steps
if Save_Checkpoint_Every==None:
Save_Checkpoint_Every=1
stp=0
if Start_saving_from_the_step==None:
Start_saving_from_the_step=0
if (Start_saving_from_the_step < 200):
Start_saving_from_the_step=Save_Checkpoint_Every
stpsv=Start_saving_from_the_step
if Save_Checkpoint_Every_n_Steps:
stp=Save_Checkpoint_Every
def dump_only_textenc(trnonltxt, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, PT, Seed, precision, Training_Steps):
call('accelerate launch /notebooks/diffusers/examples/dreambooth/train_dreambooth_pps.py \
'+trnonltxt+' \
'+extrnlcptn+' \
'+ofstnse+' \
--train_text_encoder \
--image_captions_filename \
--dump_only_text_encoder \
--pretrained_model_name_or_path='+MODELT_NAME+' \
--instance_data_dir='+INSTANCE_DIR+' \
--output_dir='+OUTPUT_DIR+' \
--captions_dir='+CAPTIONS_DIR+' \
--instance_prompt='+PT+' \
--seed='+str(Seed)+' \
--resolution='+str(Resolution)+' \
--mixed_precision='+str(precision)+' \
--train_batch_size=1 \
--gradient_accumulation_steps=1 --gradient_checkpointing \
--use_8bit_adam \
--learning_rate='+str(Text_Encoder_Learning_Rate)+' \
--lr_scheduler="linear" \
--lr_warmup_steps=0 \
--max_train_steps='+str(Training_Steps), shell=True)
def train_only_unet(stp, stpsv, SESSION_DIR, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, Text_Encoder_Training_Steps, PT, Seed, Resolution, extrnlcptn, precision, Training_Steps):
clear_output()
if resuming=="Yes":
print('[1;32mResuming Training...[0m')
print('[1;33mTraining the UNet...[0m')
call('accelerate launch /notebooks/diffusers/examples/dreambooth/train_dreambooth_pps.py \
'+extrnlcptn+' \
'+ofstnse+' \
--image_captions_filename \
--train_only_unet \
--Session_dir='+SESSION_DIR+' \
--save_starting_step='+str(stpsv)+' \
--save_n_steps='+str(stp)+' \
--pretrained_model_name_or_path='+MODELT_NAME+' \
--instance_data_dir='+INSTANCE_DIR+' \
--output_dir='+OUTPUT_DIR+' \
--captions_dir='+CAPTIONS_DIR+' \
--instance_prompt='+PT+' \
--seed='+str(Seed)+' \
--resolution='+str(Resolution)+' \
--mixed_precision='+str(precision)+' \
--train_batch_size=1 \
--gradient_accumulation_steps=1 --gradient_checkpointing \
--use_8bit_adam \
--learning_rate='+str(UNet_Learning_Rate)+' \
--lr_scheduler="linear" \
--lr_warmup_steps=0 \
--max_train_steps='+str(Training_Steps), shell=True)
if Enable_text_encoder_training :
print('[1;33mTraining the text encoder...[0m')
if os.path.exists(OUTPUT_DIR+'/'+'text_encoder_trained'):
call('rm -r '+OUTPUT_DIR+'/text_encoder_trained', shell=True)
dump_only_textenc(trnonltxt, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, PT, Seed, precision, Training_Steps=stptxt)
if Enable_Text_Encoder_Concept_Training:
if os.path.exists(CONCEPT_DIR):
if os.listdir(CONCEPT_DIR)!=[]:
clear_output()
if resuming=="Yes":
print('[1;32mResuming Training...[0m')
print('[1;33mTraining the text encoder on the concept...[0m')
dump_only_textenc(trnonltxt, MODELT_NAME, CONCEPT_DIR, OUTPUT_DIR, PT, Seed, precision, Training_Steps=stptxtc)
else:
clear_output()
if resuming=="Yes":
print('[1;32mResuming Training...[0m')
print('[1;31mNo concept images found, skipping concept training...')
Text_Encoder_Concept_Training_Steps=0
time.sleep(8)
else:
clear_output()
if resuming=="Yes":
print('[1;32mResuming Training...[0m')
print('[1;31mNo concept images found, skipping concept training...')
Text_Encoder_Concept_Training_Steps=0
time.sleep(8)
if UNet_Training_Steps!=0:
train_only_unet(stp, stpsv, SESSION_DIR, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, Text_Encoder_Training_Steps, PT, Seed, Resolution, extrnlcptn, precision, Training_Steps=UNet_Training_Steps)
if UNet_Training_Steps==0 and Text_Encoder_Concept_Training_Steps==0 and Text_Encoder_Training_Steps==0 :
print('[1;32mNothing to do')
else:
if os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
call('python /notebooks/diffusers/scripts/convertosdv2.py --fp16 '+OUTPUT_DIR+' '+SESSION_DIR+'/'+Session_Name+'.ckpt', shell=True)
clear_output()
if os.path.exists(SESSION_DIR+"/"+INSTANCE_NAME+'.ckpt'):
clear_output()
print("[1;32mDONE, the CKPT model is in the session's folder")
else:
print("[1;31mSomething went wrong")
else:
print("[1;31mSomething went wrong")
return resumev2
def testui(Custom_Path, Previous_Session_Name, Session_Name, User, Password):
if Previous_Session_Name!="":
print("[1;32mLoading a previous session model")
mdldir='/notebooks/Fast-Dreambooth/Sessions/'+Previous_Session_Name
path_to_trained_model=mdldir+"/"+Previous_Session_Name+'.ckpt'
while not os.path.exists(path_to_trained_model):
print("[1;31mThere is no trained model in the previous session")
time.sleep(5)
elif Custom_Path!="":
print("[1;32mLoading model from a custom path")
path_to_trained_model=Custom_Path
while not os.path.exists(path_to_trained_model):
print("[1;31mWrong Path")
time.sleep(5)
else:
print("[1;32mLoading the trained model")
mdldir='/notebooks/Fast-Dreambooth/Sessions/'+Session_Name
path_to_trained_model=mdldir+"/"+Session_Name+'.ckpt'
while not os.path.exists(path_to_trained_model):
print("[1;31mThere is no trained model in this session")
time.sleep(5)
auth=f"--gradio-auth {User}:{Password}"
if User =="" or Password=="":
auth=""
os.chdir('/notebooks')
if not os.path.exists('/notebooks/sd/stablediffusion'):
call('wget -q -O sd_rep.tar.zst https://huggingface.co/TheLastBen/dependencies/resolve/main/sd_rep.tar.zst', shell=True)
call('tar --zstd -xf sd_rep.tar.zst', shell=True)
call('rm sd_rep.tar.zst', shell=True)
os.chdir('/notebooks/sd')
if not os.path.exists('stable-diffusion-webui'):
call('git clone -q --depth 1 --branch master https://github.com/AUTOMATIC1111/stable-diffusion-webui', shell=True)
os.chdir('/notebooks/sd/stable-diffusion-webui/')
call('git reset --hard', shell=True, stdout=open('/dev/null', 'w'))
print('[1;32m')
call('git pull', shell=True, stdout=open('/dev/null', 'w'))
os.chdir('/notebooks')
clear_output()
if not os.path.exists('/usr/lib/node_modules/localtunnel'):
call('npm install -g localtunnel --silent', shell=True, stdout=open('/dev/null', 'w'))
call('wget -q -O /usr/local/lib/python3.9/dist-packages/gradio/blocks.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/blocks.py', shell=True)
localurl="tensorboard-"+os.environ.get('PAPERSPACE_FQDN')
for line in fileinput.input('/usr/local/lib/python3.9/dist-packages/gradio/blocks.py', inplace=True):
if line.strip().startswith('self.server_name ='):
line = f' self.server_name = "{localurl}"\n'
if line.strip().startswith('self.protocol = "https"'):
line = ' self.protocol = "https"\n'
if line.strip().startswith('if self.local_url.startswith("https") or self.is_colab'):
line = ''
if line.strip().startswith('else "http"'):
line = ''
sys.stdout.write(line)
os.chdir('/notebooks/sd/stable-diffusion-webui/modules')
call('wget -q -O paths.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/paths.py', shell=True)
call("sed -i 's@/content/gdrive/MyDrive/sd/stablediffusion@/notebooks/sd/stablediffusion@' /notebooks/sd/stable-diffusion-webui/modules/paths.py", shell=True)
call("sed -i 's@\"quicksettings\": OptionInfo(.*@\"quicksettings\": OptionInfo(\"sd_model_checkpoint, sd_vae, CLIP_stop_at_last_layers, inpainting_mask_weight, initial_noise_multiplier\", \"Quicksettings list\"),@' /notebooks/sd/stable-diffusion-webui/modules/shared.py", shell=True)
os.chdir('/notebooks/sd/stable-diffusion-webui')
clear_output()
configf="--disable-console-progressbars --no-gradio-queue --no-half-vae --disable-safe-unpickle --api --no-download-sd-model --xformers --enable-insecure-extension-access --port 6006 --listen --skip-version-check --ckpt "+path_to_trained_model+" "+auth
return configf
def clean():
Sessions=os.listdir("/notebooks/Fast-Dreambooth/Sessions")
s = widgets.Select(
options=Sessions,
rows=5,
description='',
disabled=False
)
out=widgets.Output()
d = widgets.Button(
description='Remove',
disabled=False,
button_style='warning',
tooltip='Removet the selected session',
icon='warning'
)
def rem(d):
with out:
if s.value is not None:
clear_output()
print("[1;33mTHE SESSION [1;31m"+s.value+" [1;33mHAS BEEN REMOVED FROM THE STORAGE")
call('rm -r /notebooks/Fast-Dreambooth/Sessions/'+s.value, shell=True)
if os.path.exists('/notebooks/models/'+s.value):
call('rm -r /notebooks/models/'+s.value, shell=True)
s.options=os.listdir("/notebooks/Fast-Dreambooth/Sessions")
else:
d.close()
s.close()
clear_output()
print("[1;32mNOTHING TO REMOVE")
d.on_click(rem)
if s.value is not None:
display(s,d,out)
else:
print("[1;32mNOTHING TO REMOVE")
def hfv2(Name_of_your_concept, Save_concept_to, hf_token_write, INSTANCE_NAME, OUTPUT_DIR, Session_Name, MDLPTH):
from slugify import slugify
from huggingface_hub import HfApi, HfFolder, CommitOperationAdd
from huggingface_hub import create_repo
from IPython.display import display_markdown
if(Name_of_your_concept == ""):
Name_of_your_concept = Session_Name
Name_of_your_concept=Name_of_your_concept.replace(" ","-")
if hf_token_write =="":
print('[1;32mYour Hugging Face write access token : ')
hf_token_write=input()
hf_token = hf_token_write
api = HfApi()
your_username = api.whoami(token=hf_token)["name"]
repo_id = f"{your_username}/{slugify(Name_of_your_concept)}"
output_dir = f'/notebooks/models/'+INSTANCE_NAME
def bar(prg):
clear_output()
br="[1;33mUploading to HuggingFace : " '[0m|'+'█' * prg + ' ' * (25-prg)+'| ' +str(prg*4)+ "%"
return br
print(bar(1))
readme_text = f'''---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### {Name_of_your_concept} Dreambooth model trained by {api.whoami(token=hf_token)["name"]} with TheLastBen's fast-DreamBooth notebook
'''
#Save the readme to a file
readme_file = open("README.md", "w")
readme_file.write(readme_text)
readme_file.close()
operations = [
CommitOperationAdd(path_in_repo="README.md", path_or_fileobj="README.md"),
CommitOperationAdd(path_in_repo=f"{Session_Name}.ckpt",path_or_fileobj=MDLPTH)
]
create_repo(repo_id,private=True, token=hf_token)
api.create_commit(
repo_id=repo_id,
operations=operations,
commit_message=f"Upload the concept {Name_of_your_concept} embeds and token",
token=hf_token
)
print(bar(8))
api.upload_folder(
folder_path=OUTPUT_DIR+"/scheduler",
path_in_repo="scheduler",
repo_id=repo_id,
token=hf_token
)
print(bar(9))
api.upload_folder(
folder_path=OUTPUT_DIR+"/text_encoder",
path_in_repo="text_encoder",
repo_id=repo_id,
token=hf_token
)
print(bar(12))
api.upload_folder(
folder_path=OUTPUT_DIR+"/tokenizer",
path_in_repo="tokenizer",
repo_id=repo_id,
token=hf_token
)
print(bar(13))
api.upload_folder(
folder_path=OUTPUT_DIR+"/unet",
path_in_repo="unet",
repo_id=repo_id,
token=hf_token
)
print(bar(21))
api.upload_folder(
folder_path=OUTPUT_DIR+"/vae",
path_in_repo="vae",
repo_id=repo_id,
token=hf_token
)
print(bar(23))
api.upload_file(
path_or_fileobj=OUTPUT_DIR+"/model_index.json",
path_in_repo="model_index.json",
repo_id=repo_id,
token=hf_token
)
print(bar(25))
print("[1;32mYour concept was saved successfully at https://huggingface.co/"+repo_id)
done()
def crop_image(im, size):
GREEN = "#0F0"
BLUE = "#00F"
RED = "#F00"
def focal_point(im, settings):
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else []
pois = []
weight_pref_total = 0
if len(corner_points) > 0:
weight_pref_total += settings.corner_points_weight
if len(entropy_points) > 0:
weight_pref_total += settings.entropy_points_weight
if len(face_points) > 0:
weight_pref_total += settings.face_points_weight
corner_centroid = None
if len(corner_points) > 0:
corner_centroid = centroid(corner_points)
corner_centroid.weight = settings.corner_points_weight / weight_pref_total
pois.append(corner_centroid)
entropy_centroid = None
if len(entropy_points) > 0:
entropy_centroid = centroid(entropy_points)
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
pois.append(entropy_centroid)
face_centroid = None
if len(face_points) > 0:
face_centroid = centroid(face_points)
face_centroid.weight = settings.face_points_weight / weight_pref_total
pois.append(face_centroid)
average_point = poi_average(pois, settings)
return average_point
def image_face_points(im, settings):
np_im = np.array(im)
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
tries = [
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
]
for t in tries:
classifier = cv2.CascadeClassifier(t[0])
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
try:
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
except:
continue
if len(faces) > 0:
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
return []
def image_corner_points(im, settings):
grayscale = im.convert("L")
gd = ImageDraw.Draw(grayscale)
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
np_im = np.array(grayscale)
points = cv2.goodFeaturesToTrack(
np_im,
maxCorners=100,
qualityLevel=0.04,
minDistance=min(grayscale.width, grayscale.height)*0.06,
useHarrisDetector=False,
)
if points is None:
return []
focal_points = []
for point in points:
x, y = point.ravel()
focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points)))
return focal_points
def image_entropy_points(im, settings):
landscape = im.height < im.width
portrait = im.height > im.width
if landscape:
move_idx = [0, 2]
move_max = im.size[0]
elif portrait:
move_idx = [1, 3]
move_max = im.size[1]
else:
return []
e_max = 0
crop_current = [0, 0, settings.crop_width, settings.crop_height]
crop_best = crop_current
while crop_current[move_idx[1]] < move_max:
crop = im.crop(tuple(crop_current))
e = image_entropy(crop)
if (e > e_max):
e_max = e
crop_best = list(crop_current)
crop_current[move_idx[0]] += 4
crop_current[move_idx[1]] += 4
x_mid = int(crop_best[0] + settings.crop_width/2)
y_mid = int(crop_best[1] + settings.crop_height/2)
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
def image_entropy(im):
# greyscale image entropy
# band = np.asarray(im.convert("L"))
band = np.asarray(im.convert("1"), dtype=np.uint8)
hist, _ = np.histogram(band, bins=range(0, 256))
hist = hist[hist > 0]
return -np.log2(hist / hist.sum()).sum()
def centroid(pois):
x = [poi.x for poi in pois]
y = [poi.y for poi in pois]
return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois))
def poi_average(pois, settings):
weight = 0.0
x = 0.0
y = 0.0
for poi in pois:
weight += poi.weight
x += poi.x * poi.weight
y += poi.y * poi.weight
avg_x = round(weight and x / weight)
avg_y = round(weight and y / weight)
return PointOfInterest(avg_x, avg_y)
def is_landscape(w, h):
return w > h
def is_portrait(w, h):
return h > w
def is_square(w, h):
return w == h
class PointOfInterest:
def __init__(self, x, y, weight=1.0, size=10):
self.x = x
self.y = y
self.weight = weight
self.size = size
def bounding(self, size):
return [
self.x - size//2,
self.y - size//2,
self.x + size//2,
self.y + size//2
]
class Settings:
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5):
self.crop_width = crop_width
self.crop_height = crop_height
self.corner_points_weight = corner_points_weight
self.entropy_points_weight = entropy_points_weight
self.face_points_weight = face_points_weight
settings = Settings(
crop_width = size,
crop_height = size,
face_points_weight = 0.9,
entropy_points_weight = 0.15,
corner_points_weight = 0.5,
)
scale_by = 1
if is_landscape(im.width, im.height):
scale_by = settings.crop_height / im.height
elif is_portrait(im.width, im.height):
scale_by = settings.crop_width / im.width
elif is_square(im.width, im.height):
if is_square(settings.crop_width, settings.crop_height):
scale_by = settings.crop_width / im.width
elif is_landscape(settings.crop_width, settings.crop_height):
scale_by = settings.crop_width / im.width
elif is_portrait(settings.crop_width, settings.crop_height):
scale_by = settings.crop_height / im.height
im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
im_debug = im.copy()
focus = focal_point(im_debug, settings)
# take the focal point and turn it into crop coordinates that try to center over the focal
# point but then get adjusted back into the frame
y_half = int(settings.crop_height / 2)
x_half = int(settings.crop_width / 2)
x1 = focus.x - x_half
if x1 < 0:
x1 = 0
elif x1 + settings.crop_width > im.width:
x1 = im.width - settings.crop_width
y1 = focus.y - y_half
if y1 < 0:
y1 = 0
elif y1 + settings.crop_height > im.height:
y1 = im.height - settings.crop_height
x2 = x1 + settings.crop_width
y2 = y1 + settings.crop_height
crop = [x1, y1, x2, y2]
results = []
results.append(im.crop(tuple(crop)))
return results |