File size: 11,959 Bytes
56fe89d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
{
"cells": [
{
"cell_type": "markdown",
"id": "494d5ce4-5843-4d70-ae96-c1983e21b6e8",
"metadata": {},
"source": [
"## Dreambooth v1.5 Paperspace Notebook From https://github.com/TheLastBen/fast-stable-diffusion, if you encounter any issues, feel free to discuss them. [Support](https://ko-fi.com/thelastben)"
]
},
{
"cell_type": "markdown",
"id": "8afdca63-eff3-4a9d-b4d9-127c0f028033",
"metadata": {
"tags": []
},
"source": [
"# Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "be74b2d5-da96-4bf4-ae82-4fe4b8abc04c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Install the dependencies\n",
"\n",
"force_reinstall= False\n",
"\n",
"# Set to true only if you want to install the dependencies again.\n",
"\n",
"\n",
"#--------------------\n",
"with open('/dev/null', 'w') as devnull:import requests, os, time, importlib;open('/notebooks/mainpaperspacev1.py', 'wb').write(requests.get('https://huggingface.co/datasets/TheLastBen/PPS/raw/main/Scripts/mainpaperspacev1.py').content); os.chdir('/notebooks');time.sleep(3);import mainpaperspacev1;importlib.reload(mainpaperspacev1);from mainpaperspacev1 import *;Deps(force_reinstall)"
]
},
{
"cell_type": "markdown",
"id": "7a4ef4a2-6863-4603-9254-a1e2a547ee38",
"metadata": {
"tags": []
},
"source": [
"# Download the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a1ba734e-515b-4761-8c88-ef7f165d7971",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"#Leave everything EMPTY to use the original model\n",
"\n",
"Path_to_HuggingFace= \"\"\n",
"\n",
"# Load and finetune a model from Hugging Face, use the format \"profile/model\" like : runwayml/stable-diffusion-v1-5\n",
"\n",
"\n",
"CKPT_Path = \"\"\n",
"\n",
"# Load a CKPT model from the storage.\n",
"\n",
"\n",
"CKPT_Link = \"\"\n",
"\n",
"# A CKPT direct link, huggingface CKPT link or a shared CKPT from gdrive.\n",
"\n",
"\n",
"#----------------\n",
"MODEL_NAME=dl(Path_to_HuggingFace, CKPT_Path, CKPT_Link)"
]
},
{
"cell_type": "markdown",
"id": "4c6c4932-e614-4f5e-8d4a-4feca5ce54f5",
"metadata": {},
"source": [
"# Create/Load a Session"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b6595c37-8ad2-45ff-a055-fe58c6663d2f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"Session_Name = \"\"\n",
"\n",
"# Enter the session name, it if it exists, it will load it, otherwise it'll create an new session.\n",
"\n",
"\n",
"Session_Link_optional = \"\"\n",
"\n",
"# Import a session from another gdrive, the shared gdrive link must point to the specific session's folder that contains the trained CKPT, remove any intermediary CKPT if any.\n",
"\n",
"\n",
"#-----------------\n",
"[PT, WORKSPACE, Session_Name, INSTANCE_NAME, OUTPUT_DIR, SESSION_DIR, CONCEPT_DIR, INSTANCE_DIR, CAPTIONS_DIR, MDLPTH, MODEL_NAME, resume]=sess(Session_Name, Session_Link_optional, MODEL_NAME if 'MODEL_NAME' in locals() else \"\")"
]
},
{
"cell_type": "markdown",
"id": "5698de61-08d3-4d90-83ef-f882ed956d01",
"metadata": {},
"source": [
"# Instance Images"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bc2f8f28-226e-45b8-8257-804bbb711f56",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"Remove_existing_instance_images= True\n",
"\n",
"# Set to False to keep the existing instance images if any.\n",
"\n",
"\n",
"IMAGES_FOLDER_OPTIONAL=\"\"\n",
"\n",
"# If you prefer to specify directly the folder of the pictures instead of uploading, this will add the pictures to the existing (if any) instance images. Leave EMPTY to upload.\n",
"\n",
"\n",
"Smart_crop_images= True\n",
"\n",
"# Automatically crop your input images.\n",
"\n",
"\n",
"Crop_size = 512\n",
"\n",
"# Choices: \"512\", \"576\", \"640\", \"704\", \"768\", \"832\", \"896\", \"960\", \"1024\"\n",
"\n",
"# Check out this example for naming : https://i.imgur.com/d2lD3rz.jpeg\n",
"\n",
"\n",
"#-----------------\n",
"uplder(Remove_existing_instance_images, Smart_crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, False)"
]
},
{
"cell_type": "markdown",
"id": "0e93924f-a6bf-45d5-aa77-915ad7385dcd",
"metadata": {},
"source": [
"# Manual Captioning"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c5dbcb29-b42f-4cfc-9be8-83355838d5a2",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Open a tool to manually caption the instance images.\n",
"\n",
"#-----------------\n",
"caption(CAPTIONS_DIR, INSTANCE_DIR)"
]
},
{
"cell_type": "markdown",
"id": "c90140c1-6c91-4cae-a222-e1a746957f95",
"metadata": {},
"source": [
"# Concept Images"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "55c27688-8601-4943-b61d-fc48b9ded067",
"metadata": {},
"outputs": [],
"source": [
"Remove_existing_concept_images= True\n",
"\n",
"# Set to False to keep the existing concept images if any.\n",
"\n",
"\n",
"IMAGES_FOLDER_OPTIONAL=\"\"\n",
"\n",
"# If you prefer to specify directly the folder of the pictures instead of uploading, this will add the pictures to the existing (if any) concept images. Leave EMPTY to upload.\n",
"\n",
"\n",
"#-----------------\n",
"uplder(Remove_existing_concept_images, True, 512, IMAGES_FOLDER_OPTIONAL, CONCEPT_DIR, CAPTIONS_DIR, True)"
]
},
{
"cell_type": "markdown",
"id": "2a4aa42a-fd68-41ad-9ba7-da99f834e2c1",
"metadata": {},
"source": [
"# Dreambooth"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "612d8335-b984-4f34-911d-5457ff98e507",
"metadata": {},
"outputs": [],
"source": [
"Resume_Training = False\n",
"\n",
"# If you're not satisfied with the result, Set to True, run again the cell and it will continue training the current model.\n",
"\n",
"\n",
"UNet_Training_Steps=1500\n",
"\n",
"UNet_Learning_Rate = \"4e-6\"\n",
"\n",
"# If you use 10 images, use 1500 steps, if you're not satisfied with the result, resume training for another 200 steps, and so on ...\n",
"\n",
"\n",
"Text_Encoder_Training_Steps=300\n",
"\n",
"Text_Encoder_Learning_Rate= \"1e-6\"\n",
"\n",
"# 350-600 steps is enough for a small dataset, keep this number small to avoid overfitting, set to 0 to disable, set it to 0 before resuming training if it is already trained.\n",
"\n",
"\n",
"Text_Encoder_Concept_Training_Steps=0\n",
"\n",
"# Suitable for training a style/concept as it acts as regularization, with a minimum of 300 steps, 1 step/image is enough to train the concept(s), set to 0 to disable, set both the settings above to 0 to fintune only the text_encoder on the concept, set it to 0 before resuming training if it is already trained.\n",
"\n",
"\n",
"External_Captions= False\n",
"\n",
"# Get the captions from a text file for each instance image.\n",
"\n",
"\n",
"Style_Training=False\n",
"\n",
"# Further reduce overfitting, suitable when training a style or a general theme, don't check the box at the beginning, check it after training for at least 800 steps. (Has no effect when using External Captions)\n",
"\n",
"\n",
"Resolution = 512\n",
"\n",
"# Choices : \"512\", \"576\", \"640\", \"704\", \"768\", \"832\", \"896\", \"960\", \"1024\"\n",
"# Higher resolution = Higher quality, make sure the instance images are cropped to this selected size (or larger).\n",
"\n",
"#---------------------------------------------------------------\n",
"\n",
"Save_Checkpoint_Every_n_Steps = False\n",
"\n",
"Save_Checkpoint_Every=500\n",
"\n",
"# Minimum 200 steps between each save.\n",
"\n",
"\n",
"Start_saving_from_the_step=500\n",
"\n",
"# Start saving intermediary checkpoints from this step.\n",
"\n",
"\n",
"#-----------------\n",
"resume=dbtrain(Resume_Training, UNet_Training_Steps, UNet_Learning_Rate, Text_Encoder_Training_Steps, Text_Encoder_Concept_Training_Steps, Text_Encoder_Learning_Rate, Style_Training, Resolution, MODEL_NAME, SESSION_DIR, INSTANCE_DIR, CONCEPT_DIR, CAPTIONS_DIR, External_Captions, INSTANCE_NAME, Session_Name, OUTPUT_DIR, PT, resume, Save_Checkpoint_Every_n_Steps, Start_saving_from_the_step, Save_Checkpoint_Every)"
]
},
{
"cell_type": "markdown",
"id": "bf6f2232-60b3-41c5-bea6-b0dcc4aef937",
"metadata": {},
"source": [
"# Test the Trained Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1263a084-b142-4e63-a0aa-2706673a4355",
"metadata": {},
"outputs": [],
"source": [
"Previous_Session_Name=\"\"\n",
"\n",
"# Leave empty if you want to use the current trained model.\n",
"\n",
"\n",
"Custom_Path = \"\"\n",
"\n",
"# Input the full path to a desired model.\n",
"\n",
"\n",
"User = \"\"\n",
"\n",
"Password= \"\"\n",
"\n",
"# Add credentials to your Gradio interface (optional).\n",
"\n",
"\n",
"Use_localtunnel = False\n",
"\n",
"# If you have trouble using Gradio server, use this one.\n",
"\n",
"\n",
"#-----------------\n",
"configf=test(Custom_Path, Previous_Session_Name, Session_Name, User, Password, Use_localtunnel) if 'Session_Name' in locals() else test(Custom_Path, Previous_Session_Name, \"\", User, Password, Use_localtunnel)\n",
"!python /notebooks/sd/stable-diffusion-webui/webui.py $configf"
]
},
{
"cell_type": "markdown",
"id": "53ccbcaf-3319-44f5-967b-ecbdfa9d0e78",
"metadata": {},
"source": [
"# Upload The Trained Model to Hugging Face"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2c9cb205-d828-4e51-9943-f337bd410ea8",
"metadata": {},
"outputs": [],
"source": [
"#Save it to your personal profile or collaborate to the public [library of concepts](https://huggingface.co/sd-dreambooth-library)\n",
"\n",
"Name_of_your_concept = \"\"\n",
"\n",
"# Leave empty if you want to name your concept the same as the current session.\n",
"\n",
"\n",
"hf_token_write = \"\"\n",
"\n",
"# Create a write access token here : https://huggingface.co/settings/tokens, go to \"New token\" -> Role : Write, a regular read token won't work here.\n",
"\n",
"\n",
"#---------------------------------\n",
"hf(Name_of_your_concept, Save_concept_to, hf_token_write, INSTANCE_NAME, OUTPUT_DIR, Session_Name, MDLPTH)"
]
},
{
"cell_type": "markdown",
"id": "881d80a3-4ebf-41bc-b68f-ac1cacb080f3",
"metadata": {},
"source": [
"# Free up space"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7403744d-cc45-419f-88ac-5475fa0f7f45",
"metadata": {},
"outputs": [],
"source": [
"# Display a list of sessions from which you can remove any session you don't need anymore\n",
"\n",
"#-------------------------\n",
"clean()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
} |