license: mit
pretty_name: M-BEIR
task_categories:
- text-retrieval
- text-to-image
- image-to-text
- visual-question-answering
language:
- en
configs:
- config_name: query
data_files:
- split: train
path: query/train/*.jsonl
- split: union_train
path: query/union_train/*.jsonl
- split: val
path: query/val/*.jsonl
- split: union_val
path: query/union_val/*.jsonl
- split: test
path: query/test/*.jsonl
- config_name: mbeir_local
data_files:
- split: mbeir_local
path: cand_pool/local/*.jsonl
- config_name: mbeir_global
data_files:
- split: mbeir_global
path: cand_pool/global/mbeir_union_test_cand_pool.jsonl
- config_name: instructions
sep: "\t"
data_files:
- split: instructions
path: instructions/*.tsv
- config_name: qrels
data_files:
- split: train
path: qrels/train/*.txt
- split: val
path: qrels/val/*.txt
- split: test
path: qrels/test/*.txt
Dataset Structure Overview
M-BEIR dataset comprises two main components: Query Data and Candidate Pool. Each of these sections consists of structured entries in JSONL format (JSON Lines), meaning each line is a valid JSON object. Below is a detailed breakdown of the components and their respective fields:
Query Data (JSONL File) Each line in the Query Data file represents a unique query. The structure of each query JSON object is as follows::
{
"qid": "A unique identifier formatted as {dataset_id}:{query_id}",
"query_txt": "The text component of the query",
"query_img_path": "The file path to the associated query image",
"query_modality": "The modality type of the query (text, image or text,image)",
"query_src_content": "Additional content from the original dataset, presented as a string by json.dumps()",
"pos_cand_list": [
{
"did": "A unique identifier formatted as {dataset_id}:{doc_id}"
}
// ... more positive candidates
],
"neg_cand_list": [
{
"did": "A unique identifier formatted as {dataset_id}:{doc_id}"
}
// ... more negative candidates
]
}
Candidate Pool (JSONL File) The Candidate Pool contains potential matching documents for the queries. The structure of each candidate JSON object in this file is as follows::
{
"did": "A unique identifier for the document, formatted as {dataset_id}:{doc_id}",
"txt": "The text content of the candidate document",
"img_path": "The file path to the candidate document's image",
"modality": "The modality type of the candidate (e.g., text, image or text,image)",
"src_content": "Additional content from the original dataset, presented as a string by json.dumps()"
}
How to Use
Downloading the M-BEIR Dataset
Download the dataset files directly from the page.
Decompressing M-BEIR Images
After downloading, you will need to decompress the image files. Follow these steps in your terminal:
# Navigate to the M-BEIR directory
cd path/to/M-BEIR
# Combine the split tar.gz files into one
sh -c 'cat mbeir_images.tar.gz.part-00 mbeir_images.tar.gz.part-01 mbeir_images.tar.gz.part-02 mbeir_images.tar.gz.part-03 > mbeir_images.tar.gz'
# Extract the images from the tar.gz file
tar -xzf mbeir_images.tar.gz
Citation
Please cite our paper if you use our data, model or code.
@article{wei2023uniir,
title={UniIR: Training and Benchmarking Universal Multimodal Information Retrievers},
author={Wei, Cong and Chen, Yang and Chen, Haonan and Hu, Hexiang and Zhang, Ge and Fu, Jie and Ritter, Alan and Chen, Wenhu},
journal={arXiv preprint arXiv:2311.17136},
year={2023}
}