File size: 29,868 Bytes
4c25524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import imageio, os, torch, warnings, torchvision, argparse, json
from peft import LoraConfig, inject_adapter_in_model
from PIL import Image
import pandas as pd
from tqdm import tqdm
from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs



class ImageDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        base_path=None, metadata_path=None,
        max_pixels=1920*1080, height=None, width=None,
        height_division_factor=16, width_division_factor=16,
        data_file_keys=("image",),
        image_file_extension=("jpg", "jpeg", "png", "webp"),
        repeat=1,
        args=None,
    ):
        if args is not None:
            base_path = args.dataset_base_path
            metadata_path = args.dataset_metadata_path
            height = args.height
            width = args.width
            max_pixels = args.max_pixels
            data_file_keys = args.data_file_keys.split(",")
            repeat = args.dataset_repeat
            
        self.base_path = base_path
        self.max_pixels = max_pixels
        self.height = height
        self.width = width
        self.height_division_factor = height_division_factor
        self.width_division_factor = width_division_factor
        self.data_file_keys = data_file_keys
        self.image_file_extension = image_file_extension
        self.repeat = repeat

        if height is not None and width is not None:
            print("Height and width are fixed. Setting `dynamic_resolution` to False.")
            self.dynamic_resolution = False
        elif height is None and width is None:
            print("Height and width are none. Setting `dynamic_resolution` to True.")
            self.dynamic_resolution = True
            
        if metadata_path is None:
            print("No metadata. Trying to generate it.")
            metadata = self.generate_metadata(base_path)
            print(f"{len(metadata)} lines in metadata.")
            self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))]
        elif metadata_path.endswith(".json"):
            with open(metadata_path, "r") as f:
                metadata = json.load(f)
            self.data = metadata
        elif metadata_path.endswith(".jsonl"):
            metadata = []
            with open(metadata_path, 'r') as f:
                for line in tqdm(f):
                    metadata.append(json.loads(line.strip()))
            self.data = metadata
        else:
            metadata = pd.read_csv(metadata_path)
            self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))]


    def generate_metadata(self, folder):
        image_list, prompt_list = [], []
        file_set = set(os.listdir(folder))
        for file_name in file_set:
            if "." not in file_name:
                continue
            file_ext_name = file_name.split(".")[-1].lower()
            file_base_name = file_name[:-len(file_ext_name)-1]
            if file_ext_name not in self.image_file_extension:
                continue
            prompt_file_name = file_base_name + ".txt"
            if prompt_file_name not in file_set:
                continue
            with open(os.path.join(folder, prompt_file_name), "r", encoding="utf-8") as f:
                prompt = f.read().strip()
            image_list.append(file_name)
            prompt_list.append(prompt)
        metadata = pd.DataFrame()
        metadata["image"] = image_list
        metadata["prompt"] = prompt_list
        return metadata
    
    
    def crop_and_resize(self, image, target_height, target_width):
        width, height = image.size
        scale = max(target_width / width, target_height / height)
        image = torchvision.transforms.functional.resize(
            image,
            (round(height*scale), round(width*scale)),
            interpolation=torchvision.transforms.InterpolationMode.BILINEAR
        )
        image = torchvision.transforms.functional.center_crop(image, (target_height, target_width))
        return image
    
    
    def get_height_width(self, image):
        if self.dynamic_resolution:
            width, height = image.size
            if width * height > self.max_pixels:
                scale = (width * height / self.max_pixels) ** 0.5
                height, width = int(height / scale), int(width / scale)
            height = height // self.height_division_factor * self.height_division_factor
            width = width // self.width_division_factor * self.width_division_factor
        else:
            height, width = self.height, self.width
        return height, width
    
    
    def load_image(self, file_path):
        image = Image.open(file_path).convert("RGB")
        image = self.crop_and_resize(image, *self.get_height_width(image))
        return image
    
    
    def load_data(self, file_path):
        return self.load_image(file_path)


    def __getitem__(self, data_id):
        data = self.data[data_id % len(self.data)].copy()
        for key in self.data_file_keys:
            if key in data:
                if isinstance(data[key], list):
                    path = [os.path.join(self.base_path, p) for p in data[key]]
                    data[key] = [self.load_data(p) for p in path]
                else:
                    path = os.path.join(self.base_path, data[key])
                    data[key] = self.load_data(path)
                if data[key] is None:
                    warnings.warn(f"cannot load file {data[key]}.")
                    return None
        return data
    

    def __len__(self):
        return len(self.data) * self.repeat



class VideoDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        base_path=None, metadata_path=None,
        num_frames=81,
        time_division_factor=4, time_division_remainder=1,
        max_pixels=1920*1080, height=None, width=None,
        height_division_factor=16, width_division_factor=16,
        data_file_keys=("video",),
        image_file_extension=("jpg", "jpeg", "png", "webp"),
        video_file_extension=("mp4", "avi", "mov", "wmv", "mkv", "flv", "webm"),
        repeat=1,
        args=None,
    ):
        if args is not None:
            base_path = args.dataset_base_path
            metadata_path = args.dataset_metadata_path
            height = args.height
            width = args.width
            max_pixels = args.max_pixels
            num_frames = args.num_frames
            data_file_keys = args.data_file_keys.split(",")
            repeat = args.dataset_repeat
        
        self.base_path = base_path
        self.num_frames = num_frames
        self.time_division_factor = time_division_factor
        self.time_division_remainder = time_division_remainder
        self.max_pixels = max_pixels
        self.height = height
        self.width = width
        self.height_division_factor = height_division_factor
        self.width_division_factor = width_division_factor
        self.data_file_keys = data_file_keys
        self.image_file_extension = image_file_extension
        self.video_file_extension = video_file_extension
        self.repeat = repeat
        
        if height is not None and width is not None:
            print("Height and width are fixed. Setting `dynamic_resolution` to False.")
            self.dynamic_resolution = False
        elif height is None and width is None:
            print("Height and width are none. Setting `dynamic_resolution` to True.")
            self.dynamic_resolution = True
            
        if metadata_path is None:
            print("No metadata. Trying to generate it.")
            metadata = self.generate_metadata(base_path)
            print(f"{len(metadata)} lines in metadata.")
            self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))]
        elif metadata_path.endswith(".json"):
            with open(metadata_path, "r") as f:
                metadata = json.load(f)
            self.data = metadata
        else:
            metadata = pd.read_csv(metadata_path)
            self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))]
            
    
    def generate_metadata(self, folder):
        video_list, prompt_list = [], []
        file_set = set(os.listdir(folder))
        for file_name in file_set:
            if "." not in file_name:
                continue
            file_ext_name = file_name.split(".")[-1].lower()
            file_base_name = file_name[:-len(file_ext_name)-1]
            if file_ext_name not in self.image_file_extension and file_ext_name not in self.video_file_extension:
                continue
            prompt_file_name = file_base_name + ".txt"
            if prompt_file_name not in file_set:
                continue
            with open(os.path.join(folder, prompt_file_name), "r", encoding="utf-8") as f:
                prompt = f.read().strip()
            video_list.append(file_name)
            prompt_list.append(prompt)
        metadata = pd.DataFrame()
        metadata["video"] = video_list
        metadata["prompt"] = prompt_list
        return metadata
        
        
    def crop_and_resize(self, image, target_height, target_width):
        width, height = image.size
        scale = max(target_width / width, target_height / height)
        image = torchvision.transforms.functional.resize(
            image,
            (round(height*scale), round(width*scale)),
            interpolation=torchvision.transforms.InterpolationMode.BILINEAR
        )
        image = torchvision.transforms.functional.center_crop(image, (target_height, target_width))
        return image
    
    
    def get_height_width(self, image):
        if self.dynamic_resolution:
            width, height = image.size
            if width * height > self.max_pixels:
                scale = (width * height / self.max_pixels) ** 0.5
                height, width = int(height / scale), int(width / scale)
            height = height // self.height_division_factor * self.height_division_factor
            width = width // self.width_division_factor * self.width_division_factor
        else:
            height, width = self.height, self.width
        return height, width
    
    
    def get_num_frames(self, reader):
        num_frames = self.num_frames
        if int(reader.count_frames()) < num_frames:
            num_frames = int(reader.count_frames())
            while num_frames > 1 and num_frames % self.time_division_factor != self.time_division_remainder:
                num_frames -= 1
        return num_frames
    

    def load_video(self, file_path):
        reader = imageio.get_reader(file_path)
        num_frames = self.get_num_frames(reader)
        frames = []
        for frame_id in range(num_frames):
            frame = reader.get_data(frame_id)
            frame = Image.fromarray(frame)
            frame = self.crop_and_resize(frame, *self.get_height_width(frame))
            frames.append(frame)
        reader.close()
        return frames
    
    
    def load_image(self, file_path):
        image = Image.open(file_path).convert("RGB")
        image = self.crop_and_resize(image, *self.get_height_width(image))
        frames = [image]
        return frames
    
    
    def is_image(self, file_path):
        file_ext_name = file_path.split(".")[-1]
        return file_ext_name.lower() in self.image_file_extension
    
    
    def is_video(self, file_path):
        file_ext_name = file_path.split(".")[-1]
        return file_ext_name.lower() in self.video_file_extension
    
    
    def load_data(self, file_path):
        if self.is_image(file_path):
            return self.load_image(file_path)
        elif self.is_video(file_path):
            return self.load_video(file_path)
        else:
            return None


    def __getitem__(self, data_id):
        data = self.data[data_id % len(self.data)].copy()
        for key in self.data_file_keys:
            if key in data:
                path = os.path.join(self.base_path, data[key])
                data[key] = self.load_data(path)
                if data[key] is None:
                    warnings.warn(f"cannot load file {data[key]}.")
                    return None
        return data
    

    def __len__(self):
        return len(self.data) * self.repeat



class DiffusionTrainingModule(torch.nn.Module):
    def __init__(self):
        super().__init__()
        
        
    def to(self, *args, **kwargs):
        for name, model in self.named_children():
            model.to(*args, **kwargs)
        return self
        
        
    def trainable_modules(self):
        trainable_modules = filter(lambda p: p.requires_grad, self.parameters())
        return trainable_modules
    
    
    def trainable_param_names(self):
        trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.named_parameters()))
        trainable_param_names = set([named_param[0] for named_param in trainable_param_names])
        return trainable_param_names
    
    
    def add_lora_to_model(self, model, target_modules, lora_rank, lora_alpha=None, upcast_dtype=None):
        if lora_alpha is None:
            lora_alpha = lora_rank
        lora_config = LoraConfig(r=lora_rank, lora_alpha=lora_alpha, target_modules=target_modules)
        model = inject_adapter_in_model(lora_config, model)
        if upcast_dtype is not None:
            for param in model.parameters():
                if param.requires_grad:
                    param.data = param.to(upcast_dtype)
        return model


    def mapping_lora_state_dict(self, state_dict):
        new_state_dict = {}
        for key, value in state_dict.items():
            if "lora_A.weight" in key or "lora_B.weight" in key:
                new_key = key.replace("lora_A.weight", "lora_A.default.weight").replace("lora_B.weight", "lora_B.default.weight")
                new_state_dict[new_key] = value
            elif "lora_A.default.weight" in key or "lora_B.default.weight" in key:
                new_state_dict[key] = value
        return new_state_dict


    def export_trainable_state_dict(self, state_dict, remove_prefix=None):
        trainable_param_names = self.trainable_param_names()
        state_dict = {name: param for name, param in state_dict.items() if name in trainable_param_names}
        if remove_prefix is not None:
            state_dict_ = {}
            for name, param in state_dict.items():
                if name.startswith(remove_prefix):
                    name = name[len(remove_prefix):]
                state_dict_[name] = param
            state_dict = state_dict_
        return state_dict



class ModelLogger:
    def __init__(self, output_path, remove_prefix_in_ckpt=None, state_dict_converter=lambda x:x):
        self.output_path = output_path
        self.remove_prefix_in_ckpt = remove_prefix_in_ckpt
        self.state_dict_converter = state_dict_converter
        self.num_steps = 0


    def on_step_end(self, accelerator, model, save_steps=None):
        self.num_steps += 1
        if save_steps is not None and self.num_steps % save_steps == 0:
            self.save_model(accelerator, model, f"step-{self.num_steps}.safetensors")


    def on_epoch_end(self, accelerator, model, epoch_id):
        accelerator.wait_for_everyone()
        if accelerator.is_main_process:
            state_dict = accelerator.get_state_dict(model)
            state_dict = accelerator.unwrap_model(model).export_trainable_state_dict(state_dict, remove_prefix=self.remove_prefix_in_ckpt)
            state_dict = self.state_dict_converter(state_dict)
            os.makedirs(self.output_path, exist_ok=True)
            path = os.path.join(self.output_path, f"epoch-{epoch_id}.safetensors")
            accelerator.save(state_dict, path, safe_serialization=True)


    def on_training_end(self, accelerator, model, save_steps=None):
        if save_steps is not None and self.num_steps % save_steps != 0:
            self.save_model(accelerator, model, f"step-{self.num_steps}.safetensors")


    def save_model(self, accelerator, model, file_name):
        accelerator.wait_for_everyone()
        if accelerator.is_main_process:
            state_dict = accelerator.get_state_dict(model)
            state_dict = accelerator.unwrap_model(model).export_trainable_state_dict(state_dict, remove_prefix=self.remove_prefix_in_ckpt)
            state_dict = self.state_dict_converter(state_dict)
            os.makedirs(self.output_path, exist_ok=True)
            path = os.path.join(self.output_path, file_name)
            accelerator.save(state_dict, path, safe_serialization=True)


def launch_training_task(
    dataset: torch.utils.data.Dataset,
    model: DiffusionTrainingModule,
    model_logger: ModelLogger,
    optimizer: torch.optim.Optimizer,
    scheduler: torch.optim.lr_scheduler.LRScheduler,
    num_workers: int = 8,
    save_steps: int = None,
    num_epochs: int = 1,
    gradient_accumulation_steps: int = 1,
    find_unused_parameters: bool = False,
):
    dataloader = torch.utils.data.DataLoader(dataset, shuffle=True, collate_fn=lambda x: x[0], num_workers=num_workers)
    accelerator = Accelerator(
        gradient_accumulation_steps=gradient_accumulation_steps,
        kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=find_unused_parameters)],
    )
    model, optimizer, dataloader, scheduler = accelerator.prepare(model, optimizer, dataloader, scheduler)
    
    for epoch_id in range(num_epochs):
        for data in tqdm(dataloader):
            with accelerator.accumulate(model):
                optimizer.zero_grad()
                loss = model(data)
                accelerator.backward(loss)
                optimizer.step()
                model_logger.on_step_end(accelerator, model, save_steps)
                scheduler.step()
        if save_steps is None:
            model_logger.on_epoch_end(accelerator, model, epoch_id)
    model_logger.on_training_end(accelerator, model, save_steps)


def launch_data_process_task(model: DiffusionTrainingModule, dataset, output_path="./models"):
    dataloader = torch.utils.data.DataLoader(dataset, shuffle=False, collate_fn=lambda x: x[0])
    accelerator = Accelerator()
    model, dataloader = accelerator.prepare(model, dataloader)
    os.makedirs(os.path.join(output_path, "data_cache"), exist_ok=True)
    for data_id, data in enumerate(tqdm(dataloader)):
        with torch.no_grad():
            inputs = model.forward_preprocess(data)
            inputs = {key: inputs[key] for key in model.model_input_keys if key in inputs}
            torch.save(inputs, os.path.join(output_path, "data_cache", f"{data_id}.pth"))



def wan_parser():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument("--dataset_base_path", type=str, default="", required=True, help="Base path of the dataset.")
    parser.add_argument("--dataset_metadata_path", type=str, default=None, help="Path to the metadata file of the dataset.")
    parser.add_argument("--max_pixels", type=int, default=1280*720, help="Maximum number of pixels per frame, used for dynamic resolution..")
    parser.add_argument("--height", type=int, default=None, help="Height of images or videos. Leave `height` and `width` empty to enable dynamic resolution.")
    parser.add_argument("--width", type=int, default=None, help="Width of images or videos. Leave `height` and `width` empty to enable dynamic resolution.")
    parser.add_argument("--num_frames", type=int, default=81, help="Number of frames per video. Frames are sampled from the video prefix.")
    parser.add_argument("--data_file_keys", type=str, default="image,video", help="Data file keys in the metadata. Comma-separated.")
    parser.add_argument("--dataset_repeat", type=int, default=1, help="Number of times to repeat the dataset per epoch.")
    parser.add_argument("--model_paths", type=str, default=None, help="Paths to load models. In JSON format.")
    parser.add_argument("--model_id_with_origin_paths", type=str, default=None, help="Model ID with origin paths, e.g., Wan-AI/Wan2.1-T2V-1.3B:diffusion_pytorch_model*.safetensors. Comma-separated.")
    parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate.")
    parser.add_argument("--num_epochs", type=int, default=1, help="Number of epochs.")
    parser.add_argument("--output_path", type=str, default="./models", help="Output save path.")
    parser.add_argument("--remove_prefix_in_ckpt", type=str, default="pipe.dit.", help="Remove prefix in ckpt.")
    parser.add_argument("--trainable_models", type=str, default=None, help="Models to train, e.g., dit, vae, text_encoder.")
    parser.add_argument("--lora_base_model", type=str, default=None, help="Which model LoRA is added to.")
    parser.add_argument("--lora_target_modules", type=str, default="q,k,v,o,ffn.0,ffn.2", help="Which layers LoRA is added to.")
    parser.add_argument("--lora_rank", type=int, default=32, help="Rank of LoRA.")
    parser.add_argument("--lora_checkpoint", type=str, default=None, help="Path to the LoRA checkpoint. If provided, LoRA will be loaded from this checkpoint.")
    parser.add_argument("--extra_inputs", default=None, help="Additional model inputs, comma-separated.")
    parser.add_argument("--use_gradient_checkpointing_offload", default=False, action="store_true", help="Whether to offload gradient checkpointing to CPU memory.")
    parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Gradient accumulation steps.")
    parser.add_argument("--max_timestep_boundary", type=float, default=1.0, help="Max timestep boundary (for mixed models, e.g., Wan-AI/Wan2.2-I2V-A14B).")
    parser.add_argument("--min_timestep_boundary", type=float, default=0.0, help="Min timestep boundary (for mixed models, e.g., Wan-AI/Wan2.2-I2V-A14B).")
    parser.add_argument("--find_unused_parameters", default=False, action="store_true", help="Whether to find unused parameters in DDP.")
    parser.add_argument("--save_steps", type=int, default=None, help="Number of checkpoint saving invervals. If None, checkpoints will be saved every epoch.")
    parser.add_argument("--dataset_num_workers", type=int, default=0, help="Number of workers for data loading.")
    parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay.")
    return parser



def flux_parser():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument("--dataset_base_path", type=str, default="", required=True, help="Base path of the dataset.")
    parser.add_argument("--dataset_metadata_path", type=str, default=None, help="Path to the metadata file of the dataset.")
    parser.add_argument("--max_pixels", type=int, default=1024*1024, help="Maximum number of pixels per frame, used for dynamic resolution..")
    parser.add_argument("--height", type=int, default=None, help="Height of images. Leave `height` and `width` empty to enable dynamic resolution.")
    parser.add_argument("--width", type=int, default=None, help="Width of images. Leave `height` and `width` empty to enable dynamic resolution.")
    parser.add_argument("--data_file_keys", type=str, default="image", help="Data file keys in the metadata. Comma-separated.")
    parser.add_argument("--dataset_repeat", type=int, default=1, help="Number of times to repeat the dataset per epoch.")
    parser.add_argument("--model_paths", type=str, default=None, help="Paths to load models. In JSON format.")
    parser.add_argument("--model_id_with_origin_paths", type=str, default=None, help="Model ID with origin paths, e.g., Wan-AI/Wan2.1-T2V-1.3B:diffusion_pytorch_model*.safetensors. Comma-separated.")
    parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate.")
    parser.add_argument("--num_epochs", type=int, default=1, help="Number of epochs.")
    parser.add_argument("--output_path", type=str, default="./models", help="Output save path.")
    parser.add_argument("--remove_prefix_in_ckpt", type=str, default="pipe.dit.", help="Remove prefix in ckpt.")
    parser.add_argument("--trainable_models", type=str, default=None, help="Models to train, e.g., dit, vae, text_encoder.")
    parser.add_argument("--lora_base_model", type=str, default=None, help="Which model LoRA is added to.")
    parser.add_argument("--lora_target_modules", type=str, default="q,k,v,o,ffn.0,ffn.2", help="Which layers LoRA is added to.")
    parser.add_argument("--lora_rank", type=int, default=32, help="Rank of LoRA.")
    parser.add_argument("--lora_checkpoint", type=str, default=None, help="Path to the LoRA checkpoint. If provided, LoRA will be loaded from this checkpoint.")
    parser.add_argument("--extra_inputs", default=None, help="Additional model inputs, comma-separated.")
    parser.add_argument("--align_to_opensource_format", default=False, action="store_true", help="Whether to align the lora format to opensource format. Only for DiT's LoRA.")
    parser.add_argument("--use_gradient_checkpointing", default=False, action="store_true", help="Whether to use gradient checkpointing.")
    parser.add_argument("--use_gradient_checkpointing_offload", default=False, action="store_true", help="Whether to offload gradient checkpointing to CPU memory.")
    parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Gradient accumulation steps.")
    parser.add_argument("--find_unused_parameters", default=False, action="store_true", help="Whether to find unused parameters in DDP.")
    parser.add_argument("--save_steps", type=int, default=None, help="Number of checkpoint saving invervals. If None, checkpoints will be saved every epoch.")
    parser.add_argument("--dataset_num_workers", type=int, default=0, help="Number of workers for data loading.")
    parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay.")
    return parser



def qwen_image_parser():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument("--dataset_base_path", type=str, default="", required=True, help="Base path of the dataset.")
    parser.add_argument("--dataset_metadata_path", type=str, default=None, help="Path to the metadata file of the dataset.")
    parser.add_argument("--max_pixels", type=int, default=1024*1024, help="Maximum number of pixels per frame, used for dynamic resolution..")
    parser.add_argument("--height", type=int, default=None, help="Height of images. Leave `height` and `width` empty to enable dynamic resolution.")
    parser.add_argument("--width", type=int, default=None, help="Width of images. Leave `height` and `width` empty to enable dynamic resolution.")
    parser.add_argument("--data_file_keys", type=str, default="image", help="Data file keys in the metadata. Comma-separated.")
    parser.add_argument("--dataset_repeat", type=int, default=1, help="Number of times to repeat the dataset per epoch.")
    parser.add_argument("--model_paths", type=str, default=None, help="Paths to load models. In JSON format.")
    parser.add_argument("--model_id_with_origin_paths", type=str, default=None, help="Model ID with origin paths, e.g., Wan-AI/Wan2.1-T2V-1.3B:diffusion_pytorch_model*.safetensors. Comma-separated.")
    parser.add_argument("--tokenizer_path", type=str, default=None, help="Paths to tokenizer.")
    parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate.")
    parser.add_argument("--num_epochs", type=int, default=1, help="Number of epochs.")
    parser.add_argument("--output_path", type=str, default="./models", help="Output save path.")
    parser.add_argument("--remove_prefix_in_ckpt", type=str, default="pipe.dit.", help="Remove prefix in ckpt.")
    parser.add_argument("--trainable_models", type=str, default=None, help="Models to train, e.g., dit, vae, text_encoder.")
    parser.add_argument("--lora_base_model", type=str, default=None, help="Which model LoRA is added to.")
    parser.add_argument("--lora_target_modules", type=str, default="q,k,v,o,ffn.0,ffn.2", help="Which layers LoRA is added to.")
    parser.add_argument("--lora_rank", type=int, default=32, help="Rank of LoRA.")
    parser.add_argument("--lora_checkpoint", type=str, default=None, help="Path to the LoRA checkpoint. If provided, LoRA will be loaded from this checkpoint.")
    parser.add_argument("--extra_inputs", default=None, help="Additional model inputs, comma-separated.")
    parser.add_argument("--use_gradient_checkpointing", default=False, action="store_true", help="Whether to use gradient checkpointing.")
    parser.add_argument("--use_gradient_checkpointing_offload", default=False, action="store_true", help="Whether to offload gradient checkpointing to CPU memory.")
    parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Gradient accumulation steps.")
    parser.add_argument("--find_unused_parameters", default=False, action="store_true", help="Whether to find unused parameters in DDP.")
    parser.add_argument("--save_steps", type=int, default=None, help="Number of checkpoint saving invervals. If None, checkpoints will be saved every epoch.")
    parser.add_argument("--dataset_num_workers", type=int, default=0, help="Number of workers for data loading.")
    parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay.")
    parser.add_argument("--processor_path", type=str, default=None, help="Path to the processor. If provided, the processor will be used for image editing.")
    parser.add_argument("--enable_fp8_training", default=False, action="store_true", help="Whether to enable FP8 training. Only available for LoRA training on a single GPU.")
    return parser