code
stringlengths 35
6.69k
| score
float64 6.5
11.5
|
|---|---|
module m8X3_encoder_behavior_modeling (
D,
x,
y,
z
); //8x3 encoder using RTL
input wire [7:0] D;
output reg x, y, z;
always @(D) begin
if (D[0] == 1) begin
x <= 0;
y <= 0;
z <= 0;
end else if (D[1] == 1) begin
x <= 0;
y <= 0;
z <= 1;
end else if (D[2] == 1) begin
x <= 0;
y <= 1;
z <= 0;
end else if (D[3] == 1) begin
x <= 0;
y <= 1;
z <= 1;
end else if (D[4] == 1) begin
x <= 1;
y <= 0;
z <= 0;
end else if (D[5] == 1) begin
x <= 1;
y <= 0;
z <= 1;
end else if (D[6] == 1) begin
x <= 1;
y <= 1;
z <= 0;
end else if (D[7] == 1) begin
x <= 1;
y <= 1;
z <= 1;
end
end
endmodule
| 6.808857
|
module processing_element (
reset,
clk,
in_a,
in_b,
out_a,
out_b,
out_c
);
input reset;
input clk;
input [`DWIDTH-1:0] in_a;
input [`DWIDTH-1:0] in_b;
output [`DWIDTH-1:0] out_a;
output [`DWIDTH-1:0] out_b;
output [`DWIDTH-1:0] out_c; //reduced precision
reg [`DWIDTH-1:0] out_a;
reg [`DWIDTH-1:0] out_b;
wire [`DWIDTH-1:0] out_c;
wire [`DWIDTH-1:0] out_mac;
assign out_c = out_mac;
seq_mac u_mac (
.a(in_a),
.b(in_b),
.out(out_mac),
.reset(reset),
.clk(clk)
);
always @(posedge clk) begin
if (reset) begin
out_a <= 0;
out_b <= 0;
end else begin
out_a <= in_a;
out_b <= in_b;
end
end
endmodule
| 6.504296
|
module processing_element (
reset,
clk,
in_a,
in_b,
out_a,
out_b,
out_c
);
input reset;
input clk;
input [`DWIDTH-1:0] in_a;
input [`DWIDTH-1:0] in_b;
output [`DWIDTH-1:0] out_a;
output [`DWIDTH-1:0] out_b;
output [`DWIDTH-1:0] out_c; //reduced precision
reg [`DWIDTH-1:0] out_a;
reg [`DWIDTH-1:0] out_b;
wire [`DWIDTH-1:0] out_c;
wire [`DWIDTH-1:0] out_mac;
assign out_c = out_mac;
seq_mac u_mac (
.a(in_a),
.b(in_b),
.out(out_mac),
.reset(reset),
.clk(clk)
);
always @(posedge clk) begin
if (reset) begin
out_a <= 0;
out_b <= 0;
end else begin
out_a <= in_a;
out_b <= in_b;
end
end
endmodule
| 6.504296
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always begin
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module test;
wire [3:0] y;
reg [3:0] a = 3'd7;
reg [3:0] b = 3'd4;
reg [3:0] opcode;
integer i = 0;
alu4bit a1 (
a,
b,
opcode,
y
);
initial begin
$dumpfile("8_4bit_alu.vcd");
$dumpvars(0, test);
opcode = 4'd0;
for (i = 0; i < 16; i++) begin
#5 opcode = opcode + 1;
end
#5 $finish;
end
always @(a, b, opcode)
$strobe(
"At time = (%0t),a = (%h),b = (%h),opcode = (%d),y = (%h)", $time, a, b, opcode, y
);
endmodule
| 6.964054
|
module FA (
input a,
input b,
input cin,
output sum,
output cout
);
assign sum = a ^ b ^ cin;
assign cout = ((a && b) || (a && cin) || (b && cin));
endmodule
| 8.362615
|
module RCA (
input [7:0] a,
input [7:0] b,
input cin,
output [7:0] sum,
output carry
);
wire [6:0] co;
FA ff1 (
a[0],
b[0],
cin,
sum[0],
co[0]
);
FA ff2 (
a[1],
b[1],
co[0],
sum[1],
co[1]
);
FA ff3 (
a[2],
b[2],
co[1],
sum[2],
co[2]
);
FA ff4 (
a[3],
b[3],
co[2],
sum[3],
co[3]
);
FA ff5 (
a[4],
b[4],
co[3],
sum[4],
co[4]
);
FA ff6 (
a[5],
b[5],
co[4],
sum[5],
co[5]
);
FA ff7 (
a[6],
b[6],
co[5],
sum[6],
co[6]
);
FA ff8 (
a[7],
b[7],
co[6],
sum[7],
carry
);
endmodule
| 7.631929
|
module bc8 (
output reg [7:0] leds,
input wire clock,
input wire reset
);
reg [25:0] state;
always @(posedge clock or negedge reset) begin
if (reset == 1'b0) begin
state <= 26'b0;
leds <= 8'b0;
end else begin
state <= state + 26'b1;
if (state == 26'h3FFFFFF) begin
leds <= leds + 1'b1;
end
end
end
endmodule
| 7.004864
|
module up_counter (
out, // Output of the counter
clk, // clock input
data, // Data to load
reset // reset input
);
output [6:0] out;
input [6:0] data;
input clk, reset;
reg [6:0] out;
always @(posedge clk)
if (reset) begin // active high reset
out <= 7'b0;
end else begin
out <= out + 1;
end
endmodule
| 6.762135
|
module reg_8bit (
clk,
rst_n,
we_n,
data_in,
data_out
);
input clk, rst_n, we_n;
input [7:0] data_in;
output reg [7:0] data_out;
always @(posedge clk, negedge rst_n) begin
if (!rst_n) begin
data_out <= 0;
end else if (we_n == 0) begin
data_out <= data_in;
end else if (we_n == 1) begin
data_out <= 0;
end
end
endmodule
| 7.417492
|
module part3 (
input [9:0] SW,
input [3:0] KEY,
output reg [9:0] LEDR
);
wire w0, w1, w2, w3, w4, w5, w6, w7, y;
wire [7:0] rotate;
assign rotate[0] = w0;
assign rotate[1] = w1;
assign rotate[2] = w2;
assign rotate[3] = w3;
assign rotate[4] = w4;
assign rotate[5] = w5;
assign rotate[6] = w6;
assign rotate[7] = w7;
assign y = (KEY[1] == 1 & KEY[2] == 1 & KEY[3] == 1) ? w0 : w7;
s_circuit s0 (
.left(w1),
.right(w7),
.loadleft(~KEY[2]),
.d(SW[0]),
.loadn(~KEY[1]),
.clock(~KEY[0]),
.q(w0),
.RS(SW[9])
);
s_circuit s1 (
.left(w2),
.right(w0),
.loadleft(~KEY[2]),
.d(SW[1]),
.loadn(~KEY[1]),
.clock(~KEY[0]),
.q(w1),
.RS(SW[9])
);
s_circuit s2 (
.left(w3),
.right(w1),
.loadleft(~KEY[2]),
.d(SW[2]),
.loadn(~KEY[1]),
.clock(~KEY[0]),
.q(w2),
.RS(SW[9])
);
s_circuit s3 (
.left(w4),
.right(w2),
.loadleft(~KEY[2]),
.d(SW[3]),
.loadn(~KEY[1]),
.clock(~KEY[0]),
.q(w3),
.RS(SW[9])
);
s_circuit s4 (
.left(w5),
.right(w3),
.loadleft(~KEY[2]),
.d(SW[4]),
.loadn(~KEY[1]),
.clock(~KEY[0]),
.q(w4),
.RS(SW[9])
);
s_circuit s5 (
.left(w6),
.right(w4),
.loadleft(~KEY[2]),
.d(SW[5]),
.loadn(~KEY[1]),
.clock(~KEY[0]),
.q(w5),
.RS(SW[9])
);
s_circuit s6 (
.left(w7),
.right(w5),
.loadleft(~KEY[2]),
.d(SW[6]),
.loadn(~KEY[1]),
.clock(~KEY[0]),
.q(w6),
.RS(SW[9])
);
s_circuit s7 (
.left(y),
.right(w6),
.loadleft(~KEY[2]),
.d(SW[7]),
.loadn(~KEY[1]),
.clock(~KEY[0]),
.q(w7),
.RS(SW[9])
);
always @(*) begin
if (SW[9] == 1'b1) LEDR[7:0] <= 0;
else LEDR[7:0] <= rotate[7:0];
end
endmodule
| 6.593857
|
module mux2to1 (
x,
y,
s,
m
);
input x, y, s;
output m;
assign m = s ? y : x;
endmodule
| 7.107199
|
module flipflop (
D,
clk,
reset,
Q
);
input D, clk, reset;
output reg Q;
always @(posedge clk) begin
if (reset == 1'b1) Q <= 0;
else Q <= D;
end
endmodule
| 6.626138
|
module s_circuit (
input left,
input right,
input loadleft,
input wire d,
input loadn,
input clock,
input RS,
output wire q
);
wire d1, d2;
mux2to1 outer (
.x(right),
.y(left),
.s(loadleft),
.m(d1)
);
mux2to1 inner (
.x(d),
.y(d1),
.s(loadn),
.m(d2)
);
flipflop flipper (
.D(d2),
.clk(clock),
.reset(RS),
.Q(q)
);
endmodule
| 7.635817
|
module eight_fft (
a,
b,
c,
d,
e,
f,
g,
h,
A,
B,
C,
D,
E,
F,
G,
H,
Ai,
Bi,
Ci,
Di,
Ei,
Fi,
Gi,
Hi
);
input signed [31:0] a;
input signed [31:0] b;
input signed [31:0] c;
input signed [31:0] d;
input signed [31:0] e;
input signed [31:0] f;
input signed [31:0] g;
input signed [31:0] h;
output signed [31:0] A;
output signed [31:0] Ai;
output signed [31:0] B;
output signed [31:0] Bi;
output signed [31:0] C;
output signed [31:0] Ci;
output signed [31:0] D;
output signed [31:0] Di;
output signed [31:0] E;
output signed [31:0] Ei;
output signed [31:0] F;
output signed [31:0] Fi;
output signed [31:0] G;
output signed [31:0] Gi;
output signed [31:0] H;
output signed [31:0] Hi;
real p = 0.707;
assign A = a + b + c + d + e + f + g + h;
assign Ai = 0;
assign B = (a - e) + p * (b - f + h - d);
assign Bi = (g - c) + p * (h - d - b + f);
assign C = a + e - g - c;
assign Ci = d + h - b - f;
assign D = (a - e) + p * (f - b + d - h);
assign Di = (c - g) + p * (h + f - b - d);
assign E = a + e + c + g - b - f - d - h;
assign Ei = 0;
assign F = (a - e) + p * (f - b - h + d);
assign Fi = (g - c) + p * (b + d - h - f);
assign G = a + e - g - c;
assign Gi = b + f - d - h;
assign H = (a - e) + p * (b + h - f - d);
assign Hi = (c - g) + p * (b + d - h - f);
endmodule
| 6.6956
|
module top_module (
input [31:0] a,
input [31:0] b,
input sub,
output [31:0] result
);
//An XOR gate can also be viewed as a programmable inverter, where one input controls whether
//the other should be inverted.
wire wire1;
wire [31:0] b_xor;
assign b_xor = {32{sub}} ^ b;
add16 adder1 (
a[15:0],
b_xor[15:0],
sub,
result[15:0],
wire1
);
add16 adder2 (
a[31:16],
b_xor[31:16],
wire1,
result[31:16]
);
endmodule
| 7.203305
|
module top_module (
input clk,
input d,
input r, // synchronous reset
output q
);
always @(posedge clk) begin
if (r) q <= 1'b0;
else q <= d;
end
endmodule
| 7.203305
|
module top_module (
input a,
b,
c,
d,
e,
output [24:0] out
); //
// The output is XNOR of two vectors created by
// concatenating and replicating the five inputs.
assign out = ~{{5{a}}, {5{b}}, {5{c}}, {5{d}}, {5{e}}} ^ {{5{a, b, c, d, e}}};
endmodule
| 7.203305
|
module top_module (
input [1:0] A,
input [1:0] B,
output z
);
assign z = (A == B);
endmodule
| 7.203305
|
module top_module (
input [1:0] A,
input [1:0] B,
output z
);
assign z = ~(A[0] ^ B[0]) & ~(A[1] ^ B[1]);
endmodule
| 7.203305
|
module top_module (
input clk,
input enable,
input S,
input A,
B,
C,
output Z
);
// writing
reg [0:7] Q;
always @(posedge clk) begin
if (~enable) Q <= Q;
else begin
Q <= Q >> 1;
Q[0] <= S;
end
end
always @(*) begin
case ({
A, B, C
})
3'b000: Z = Q[0];
3'b001: Z = Q[1];
3'b010: Z = Q[2];
3'b011: Z = Q[3];
3'b100: Z = Q[4];
3'b101: Z = Q[5];
3'b110: Z = Q[6];
3'b111: Z = Q[7];
endcase
end
endmodule
| 7.203305
|
module top_module (
input clk,
input enable,
input S,
input A,
B,
C,
output reg Z
);
reg [7:0] q;
// The final circuit is a shift register attached to a 8-to-1 mux.
// Create a 8-to-1 mux that chooses one of the bits of q based on the three-bit number {A,B,C}:
// There are many other ways you could write a 8-to-1 mux
// (e.g., combinational always block -> case statement with 8 cases).
assign Z = q[{A, B, C}];
// Edge-triggered always block: This is a standard shift register (named q) with enable.
// When enabled, shift to the left by 1 (discarding q[7] and and shifting in S).
always @(posedge clk) begin
if (enable) q <= {q[6:0], S};
end
endmodule
| 7.203305
|
module top_module (
input clk,
input d,
input r, // synchronous reset
output q
);
always @(posedge clk) begin
q <= r ? 0 : d;
end
endmodule
| 7.203305
|
module top_module (
input clk,
input reset,
input [3:1] s,
output fr3,
output fr2,
output fr1,
output dfr
);
reg [2:0] state, nextstate;
parameter [2:0] A = 3'd0, // s = 000
BL = 3'd1, // s = 001 and previous state is lower
BH = 3'd2, // s = 001 and previous state is higher
CL = 3'd3, // s = 011 and previous state is lower
CH = 3'd4, // s = 011 and previous state is higher
D = 3'd5; // s = 111
always @(*) begin
case (state)
A: nextstate = (s == 3'b001) ? BL : A;
BL: nextstate = (s == 3'b011) ? CL : ((s == 3'b000) ? A : BL);
BH: nextstate = (s == 3'b011) ? CL : ((s == 3'b000) ? A : BH);
CL: nextstate = (s == 3'b111) ? D : ((s == 3'b001) ? BH : CL);
CH: nextstate = (s == 3'b111) ? D : ((s == 3'b001) ? BH : CH);
D: nextstate = (s == 3'b111) ? D : CH;
default: nextstate = 3'bxxx;
endcase
end
always @(posedge clk) begin
if (reset) begin
state <= A;
end else begin
state <= nextstate;
end
end
always @(*) begin
case (state)
A: {fr3, fr2, fr1, dfr} = 4'b1111;
BL: {fr3, fr2, fr1, dfr} = 4'b0110;
BH: {fr3, fr2, fr1, dfr} = 4'b0111;
CL: {fr3, fr2, fr1, dfr} = 4'b0010;
CH: {fr3, fr2, fr1, dfr} = 4'b0011;
D: {fr3, fr2, fr1, dfr} = 4'b0000;
default: {fr3, fr2, fr1, dfr} = 4'bxxxx;
endcase
end
endmodule
| 7.203305
|
module top_module (
input clk,
input reset,
input [3:1] s,
output reg fr3,
output reg fr2,
output reg fr1,
output reg dfr
);
// Give state names and assignments. I'm lazy, so I like to use decimal numbers.
// It doesn't really matter what assignment is used, as long as they're unique.
// We have 6 states here.
parameter A2 = 0, B1 = 1, B2 = 2, C1 = 3, C2 = 4, D1 = 5;
reg [2:0] state, next; // Make sure these are big enough to hold the state encodings.
// Edge-triggered always block (DFFs) for state flip-flops. Synchronous reset.
always @(posedge clk) begin
if (reset) state <= A2;
else state <= next;
end
// Combinational always block for state transition logic. Given the current state and inputs,
// what should be next state be?
// Combinational always block: Use blocking assignments.
always @(*) begin
case (state)
A2: next = s[1] ? B1 : A2;
B1: next = s[2] ? C1 : (s[1] ? B1 : A2);
B2: next = s[2] ? C1 : (s[1] ? B2 : A2);
C1: next = s[3] ? D1 : (s[2] ? C1 : B2);
C2: next = s[3] ? D1 : (s[2] ? C2 : B2);
D1: next = s[3] ? D1 : C2;
default: next = 'x;
endcase
end
// Combinational output logic. In this problem, a procedural block (combinational always block)
// is more convenient. Be careful not to create a latch.
always @(*) begin
case (state)
A2: {fr3, fr2, fr1, dfr} = 4'b1111;
B1: {fr3, fr2, fr1, dfr} = 4'b0110;
B2: {fr3, fr2, fr1, dfr} = 4'b0111;
C1: {fr3, fr2, fr1, dfr} = 4'b0010;
C2: {fr3, fr2, fr1, dfr} = 4'b0011;
D1: {fr3, fr2, fr1, dfr} = 4'b0000;
default: {fr3, fr2, fr1, dfr} = 'x;
endcase
end
endmodule
| 7.203305
|
module top_module (
input [15:0] a,
b,
c,
d,
e,
f,
g,
h,
i,
input [ 3:0] sel,
output [15:0] out
);
always @(*) begin
case (sel)
4'd0: out = a;
4'd1: out = b;
4'd2: out = c;
4'd3: out = d;
4'd4: out = e;
4'd5: out = f;
4'd6: out = g;
4'd7: out = h;
4'd8: out = i;
default: out = {16{1'b1}};
endcase
end
endmodule
| 7.203305
|
module top_module (
input clk,
input w,
R,
E,
L,
output reg Q
);
reg out1, out2;
initial begin
Q = 'b0;
end
always @(posedge clk) begin
case (E)
1'b0: begin
out1 = Q;
end
1'b1: begin
out1 = w;
end
endcase
case (L)
1'b0: begin
Q = out1;
end
1'b1: begin
Q = R;
end
default: Q = 'b0;
endcase
end
endmodule
| 7.203305
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge (!clk)) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge 0) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge 1) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if (((!ue[3]) && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if (('0 && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if (('1 && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && (!load))) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && '0)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && '1)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] || load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= (~bus_in);
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= '0;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= '1;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module part_93425A (
A0,
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A9,
CE_N,
WE_N,
DI,
DO
);
input A0, A1, A2, A3, A4, A5, A6, A7, A8, A9;
input CE_N, WE_N, DI;
output DO;
wire [9:0] addr;
reg ram[0:1024];
integer i;
initial begin
for (i = 0; i < 1024; i = i + 1) ram[i] = 0;
ram[0] = 0;
end
assign addr = {A9, A8, A7, A6, A5, A4, A3, A2, A1, A0};
// assign DO = (!CE_N & WE_N) ? ram[ addr ] : 1'bz;
reg DO;
always @(A9 or A8 or A7 or A6 or A5 or A4 or A3 or A2 or A1 or A0) begin
if (!CE_N & WE_N) begin
if (^addr === 1'bX || addr === 1'bz) DO <= 0;
else DO <= ram[addr];
end else DO <= 1'bz;
//$display("93425: %m read ", DO, "@", addr);
end
//always @(negedge CE_N)
//if (WE_N == 1)
// $display("93425: %m read ", DO, "@", addr);
always @(CE_N or WE_N) begin
//if (CE_N == 0)
if (!CE_N & !WE_N) begin
//$display("93425: %m write ", DI, "@", addr, ", CE_N,WE_N ", CE_N, WE_N);
ram[addr] = DI;
end
end
endmodule
| 7.551403
|
module part_93S48 (
I0,
I1,
I2,
I3,
I4,
I5,
I6,
I7,
I8,
I9,
I10,
I11,
PE,
PO
);
input I0, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11;
output PE, PO;
/*
reg PE, PO;
always @(I0 or I1 or I2 or I3 or I4 or I5 or I6 or I7 or I8 or I9 or I10 or I11)
begin
assign PE = 0;
assign PO = 0;
end
*/
//pullup p1(PE);
//pullup p2(PO);
pullup (PE, PO);
endmodule
| 7.102508
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((!(ue[3] && load))) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if (0) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if (1) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk)
if ((ue[3] && load)) begin
end
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always begin
end
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? (~IP) : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? '0 : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? '1 : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : (~0)));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : '0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : '1));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : ((!ue[0]) ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (0 ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (1 ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? (~MAR) : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? '0 : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? '1 : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (~(ue[0] ? IP : 0)));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : '0);
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : '1);
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = ((!ue[3]) ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (0 ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (1 ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (~(ue[3] ? MAR : (ue[0] ? IP : 0)));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = '0;
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = '1;
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || ((!ue[3]) && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || ('0 && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || ('1 && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && (!load)));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && '0));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && '1));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] || load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module dg_2NAND (
a,
b,
y
);
// input ports
input a;
input b;
// output ports
output y;
assign y = ~(a & b);
endmodule
| 8.507349
|
module dg_2NOR (
a,
b,
y
);
// input ports
input a;
input b;
// output ports
output y;
assign y = ~(a | b);
endmodule
| 7.880473
|
module dg_INV1 (
a,
y
);
// input ports
input a;
// output ports
output y;
assign y = ~a;
endmodule
| 6.935703
|
module dg_2AOI (
a,
b,
c,
d,
y
);
// input ports
input a;
input b;
input c;
input d;
// output ports
output y;
`ifdef IMPL_WITH_TRANS
wire w1, w2, w3, w4;
supply1 vdd; // predefined high potential
supply0 gnd; // predefined potential for ground
pmos
p1 (
w1, vdd, b
); // (drain, source, gate)
pmos
p2 (
y, w1, c
); // (drain, source, gate)
pmos
p3 (
y, w2, a
); // (drain, source, gate)
pmos p4 (w2, vdd, d);
nmos n1 (
w3, gnd, b
); // (drain, source, gate)
nmos
n2 (
y, w3, a
); // (drain, source, gate)
nmos n3 (y, w4, c);
nmos n4 (w4, gnd, d);
`else // !`ifdef IMPL_WITH_TRANS
reg y;
always @* begin
casex ({
a, b, c, d
})
4'b0000: y = 1'b1;
4'b0001: y = 1'b1;
4'b000x: y = 1'b1;
4'b0010: y = 1'b1;
4'b0011: y = 1'b0;
4'b0100: y = 1'b1;
4'b0101: y = 1'bz;
4'b0110: y = 1'b1;
4'b0111: y = 1'b0;
4'b1000: y = 1'b1;
4'b1001: y = 1'b1;
4'b100x: y = 1'b1;
4'b1010: y = 1'bz;
4'b1011: y = 1'b0;
4'b1100: y = 1'b0;
4'b110x: y = 1'b0;
4'b1110: y = 1'b0;
4'b1111: y = 1'b0;
4'b111x: y = 1'b0;
default: y = 1'b0;
endcase
end
`endif // !`ifdef IMPL_WITH_TRANS
endmodule
| 6.524401
|
module dg_XNOR (
a,
b,
y
);
// input ports
input a;
input b;
// output ports
output y;
assign y = ~(a ^ b);
endmodule
| 7.451452
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = ((!ue[0]) || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = ('0 || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = ('1 || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (!(ue[3] && load)));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || '0);
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || '1);
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] && (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module jkff (
input [1:0] jk,
input clk,
output q,
output qb
);
reg q, qb;
always @(posedge clk) begin
case (jk)
2'b00: q = q;
2'b01: q = 0;
2'b10: q = 1;
2'b11: q = ~q;
endcase
qb = ~q;
end
endmodule
| 6.983883
|
module rounds9 (
clk,
rcRound,
state1,
keyx,
keyOut,
rndstate
);
input clk;
input [3:0] rcRound;
input [127:0] state1;
input [127:0] keyx;
output [127:0] keyOut;
output [127:0] rndstate;
wire [127:0] state2, state3, state4;
//1-9 rounds
keyExp s0 (
rcRound,
keyx,
keyOut
);
subBytes s1 (
state1,
state2
);
shiftRow s2 (
state2,
state3
);
mixColumn s3 (
state3,
state4
);
assign rndstate = keyOut ^ state4;
endmodule
| 8.136865
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge (!clk)) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge 0) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge 1) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module top (
input wire clk, // 25MHz clock input
input wire clock_i, // Microcontroller to FPGA
input wire reset_i, // Reset from uC to FPGA
output wire indic, // Active clock indicator
output wire indic2,
output wire indic3,
output wire indic4,
output wire [15:0] signals
);
localparam DataWidth = 16; // 16bit Data width
localparam AddrWidth = 8; // 8bit Address width
localparam WordSize = 1; // Instructions a 1 = 2bytes in size
wire [DataWidth-1:0] OutReg;
reg ready;
reg halt;
reg ir_ld;
reg pc_ld;
reg pc_inc;
reg reg_we;
reg output_ld;
reg alu_ld;
reg [DataWidth-1:0] ir;
// ----------------------------------------------------------
// Clock used for heartbeat LED
// ----------------------------------------------------------
reg [ 22:0] clk_1hz_counter = 23'b0; // Hz clock generation counter
reg clk_cyc = 1'b0; // Hz clock
localparam FREQUENCY = 23'd1; // 4Hz
// Clock divider and generator
always @(posedge clk) begin
if (clk_1hz_counter < 23'd7_999_999) clk_1hz_counter <= clk_1hz_counter + FREQUENCY;
else begin
clk_1hz_counter <= 23'b0;
clk_cyc <= ~clk_cyc;
end
end
// ----------------------------------------------------------
// Modules
// ----------------------------------------------------------
CPU #(
.DATA_WIDTH(DataWidth),
.ADDR_WIDTH(AddrWidth),
.WORD_SIZE (WordSize)
) cpu (
.clk_i(clock_i),
.reset_ni(reset_i),
.ready_o(ready),
.halt_o(halt),
.ir_o(ir),
.out_o(OutReg),
.ir_ld_o(ir_ld),
.pc_ld_o(pc_ld),
.pc_inc_o(pc_inc),
.reg_we_o(reg_we),
.out_ld_o(output_ld),
.alu_ld_o(alu_ld)
);
// ----------------------------------------------------------
// IO routing
// ----------------------------------------------------------
// Route Output wires to pins
// White led row (Right)
// 0 1 2 3 4 5 6 7
// Pin 139 138 142 141 135 134 137 136
// (Left)
// B B B B Y Y R G
// 8 9 10 11 12 13 14 15
// Pin 4 3 144 143 8 7 2 1
assign signals[0] = OutReg[3], // white
signals[1] = OutReg[2], // white
signals[2] = OutReg[1], // white
signals[3] = OutReg[0], // white
signals[4] = OutReg[7], // white
signals[5] = OutReg[6], // white
signals[6] = OutReg[5], // white
signals[7] = OutReg[4]; // white
assign signals[11] = ir[12], // blue
signals[10] = ir[13], // blue
signals[9] = ir[14], // blue
signals[8] = ir[15], // blue
signals[12] = reg_we, // yellow
signals[13] = ir_ld, // yellow
signals[14] = halt, // Red
signals[15] = ready; // Green
// Onboard LEDs next to the HDMI connector
assign indic4 = ~pc_inc; // Red
assign indic2 = ~output_ld; // Yellow
assign indic = clk_cyc; // Green
assign indic3 = ~pc_ld; // Blue
endmodule
| 7.233807
|
module a10mlab #(
parameter WIDTH = 20,
parameter ADDR_WIDTH = 5,
parameter SIM_EMULATE = 1'b0 // this may not be exactly the same at the fine grain timing level
) (
input wclk,
input wena,
input [ADDR_WIDTH-1:0] waddr_reg,
input [WIDTH-1:0] wdata_reg,
input [ADDR_WIDTH-1:0] raddr,
output [WIDTH-1:0] rdata
);
genvar i;
generate
if (!SIM_EMULATE) begin
/////////////////////////////////////////////
// hardware cells
for (i = 0; i < WIDTH; i = i + 1) begin : ml
wire wclk_w = wclk; // workaround strange modelsim warning due to cell model tristate
twentynm_mlab_cell lrm (
.clk0(wclk_w),
.ena0(wena),
// synthesis translate off
.clk1(1'b0),
.ena1(1'b1),
.ena2(1'b1),
.clr(1'b0),
.devclrn(1'b1),
.devpor(1'b1),
// synthesis translate on
.portabyteenamasks(1'b1),
.portadatain(wdata_reg[i]),
.portaaddr(waddr_reg),
.portbaddr(raddr),
.portbdataout(rdata[i])
);
defparam lrm.mixed_port_feed_through_mode = "dont_care";
defparam lrm.logical_ram_name = "lrm"; defparam lrm.logical_ram_depth = 1 << ADDR_WIDTH;
defparam lrm.logical_ram_width = WIDTH; defparam lrm.first_address = 0;
defparam lrm.last_address = (1 << ADDR_WIDTH) - 1; defparam lrm.first_bit_number = i;
defparam lrm.data_width = 1; defparam lrm.address_width = ADDR_WIDTH;
end
end else begin
/////////////////////////////////////////////
// sim equivalent
localparam NUM_WORDS = (1 << ADDR_WIDTH);
reg [WIDTH-1:0] storage[0:NUM_WORDS-1];
integer k = 0;
initial begin
for (k = 0; k < NUM_WORDS; k = k + 1) begin
storage[k] = 0;
end
end
always @(posedge wclk) begin
if (wena) storage[waddr_reg] <= wdata_reg;
end
reg [WIDTH-1:0] rdata_b = 0;
always @(*) begin
rdata_b = storage[raddr];
end
assign rdata = rdata_b;
end
endgenerate
endmodule
| 7.403223
|
module a10_5way_register #(
parameter WIDTH = 8
) (
input clk,
input [WIDTH-1:0] d_reg,
output [WIDTH-1:0] q
);
localparam ADDR_WIDTH = 3;
reg [ADDR_WIDTH-1:0] waddr_reg = 0 /* synthesis preserve */;
reg [ADDR_WIDTH-1:0] raddr = 0 /* synthesis preserve */;
always @(posedge clk) begin
case (waddr_reg)
3'h0: begin
waddr_reg <= 3'h1;
raddr <= 3'h3;
end
3'h1: begin
waddr_reg <= 3'h2;
raddr <= 3'h4;
end
3'h2: begin
waddr_reg <= 3'h3;
raddr <= 3'h0;
end
3'h3: begin
waddr_reg <= 3'h4;
raddr <= 3'h1;
end
3'h4: begin
waddr_reg <= 3'h0;
raddr <= 3'h2;
end
// error
3'h5: begin
waddr_reg <= 3'h0;
raddr <= 3'h0;
end
3'h6: begin
waddr_reg <= 3'h0;
raddr <= 3'h0;
end
3'h7: begin
waddr_reg <= 3'h0;
raddr <= 3'h0;
end
endcase
end
wire [WIDTH-1:0] rdata;
reg [WIDTH-1:0] q_r = 0;
always @(posedge clk) begin
q_r <= rdata;
end
assign q = q_r;
wire wena = 1'b1;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 1) begin : ml
twentynm_mlab_cell lrm (
.clk0(clk),
.ena0(wena),
// synthesis translate off
.clk1(1'b0),
.ena1(1'b1),
.ena2(1'b1),
.clr(1'b0),
.devclrn(1'b1),
.devpor(1'b1),
// synthesis translate on
.portabyteenamasks(1'b1),
.portadatain(d_reg[i]),
.portaaddr(waddr_reg),
.portbaddr(raddr),
.portbdataout(rdata[i])
);
defparam lrm.mixed_port_feed_through_mode = "dont_care";
defparam lrm.logical_ram_name = "lrm"; defparam lrm.logical_ram_depth = 1 << ADDR_WIDTH;
defparam lrm.logical_ram_width = WIDTH; defparam lrm.first_address = 0;
defparam lrm.last_address = (1 << ADDR_WIDTH) - 1; defparam lrm.first_bit_number = i;
defparam lrm.data_width = 1; defparam lrm.address_width = ADDR_WIDTH;
end
endgenerate
endmodule
| 6.701759
|
module divider (
clk,
inp,
dividend,
dividend_length,
divisor,
divisor_length,
quotient,
remainder,
add_count,
sub_count,
done
);
input clk, inp;
input [31:0] dividend, divisor;
input [4:0] dividend_length, divisor_length;
output reg done;
output reg [4:0] add_count, sub_count;
output reg [31:0] quotient, remainder;
reg [31:0] div;
reg [ 5:0] counter;
initial begin
remainder <= 31'd0;
quotient <= 31'd0;
div <= 31'd0;
done <= 1'b1;
end
always @(posedge clk) begin
if (inp == 1'b1) begin // fetch new input
remainder <= dividend;
quotient <= 31'd0;
if (dividend_length > divisor_length) begin
div <= divisor << (dividend_length - divisor_length);
end
add_count <= 0;
sub_count <= 0;
counter <= 0;
done <= 1'b0;
end else if (inp == 1'b0) begin
if (dividend_length < divisor_length) begin
done <= 1'b1;
end else if (counter < dividend_length - divisor_length + 1) begin
if (remainder[31] == 1'b0) begin // Positive remainder : subtraction
remainder = remainder - div;
sub_count = sub_count + 1;
end else begin // Negative remainder: addition
remainder = remainder + div;
add_count = add_count + 1;
quotient = quotient ^ 1; // Correct quotient
end
quotient = (quotient << 1) | 1'b1; // Increment and shift quotient
div <= div >> 1; // Move to next bit
counter = counter + 1;
if (counter == dividend_length - divisor_length + 1) begin // Extra round
if (remainder[31] == 1'b1) begin // Negative remainder
remainder = remainder + div;
quotient = quotient ^ 1;
add_count = add_count + 1;
end
done <= 1'b1;
end
end
end
end
endmodule
| 7.389371
|
module divider (
clk,
inp,
dnd,
dsr,
dnd_len,
dsr_len,
quo,
rmdr,
count_add,
count_sub,
done
);
input clk;
input inp;
input [4:0] dnd_len; // dnd length
input [4:0] dsr_len; // sr length
input [31:0] dnd;
input [31:0] dsr;
output done;
output [31:0] quo;
output [31:0] count_add;
output [31:0] count_sub;
output signed [31:0] rmdr;
reg done;
reg [4:0] itr;
reg [31:0] quo;
reg [31:0] dsr_new;
reg [31:0] count_add;
reg [31:0] count_sub;
reg signed [31:0] rmdr;
initial begin
#1 done <= 1;
end
always @(posedge clk) begin
if (dnd_len < dsr_len) begin // IF bits of dnd is less than dsr
rmdr <= dnd;
quo <= 0;
itr <= 0;
count_add <= 0;
count_sub <= 0;
done <= 1;
end else begin
if (inp == 1) begin
rmdr <= dnd;
quo <= 0;
itr <= 0;
count_add <= 0;
count_sub <= 0;
dsr_new <= dsr << (dnd_len - dsr_len);
done <= 0;
end else begin
if (rmdr >= 0) begin
quo = (quo << 1) | 1;
rmdr = rmdr - dsr_new;
count_sub = count_sub + 1;
end else begin
quo = quo ^ 1'b1;
quo = (quo << 1) | 1;
rmdr = rmdr + dsr_new;
count_add = count_add + 1;
end
itr = itr + 1;
dsr_new = dsr_new >> 1;
if (itr == (dnd_len - dsr_len + 1)) begin
if (rmdr >= 0) done = 1;
else begin
done = 1;
rmdr = rmdr + dsr;
quo = quo ^ 1'b1;
count_add = count_add + 1;
end
end else begin
done <= 0;
end
end
end
end
endmodule
| 7.389371
|
module divider (
clk,
dividend,
divisor,
m,
n,
ready,
done,
q,
rem,
num_add,
num_sub
);
// Inputs
input clk;
input [31:0] dividend;
input [31:0] divisor;
input [4:0] m;
input [4:0] n;
input ready;
// Outputs
output reg done = 1;
output reg [31:0] rem;
output reg [31:0] q;
output reg [4:0] num_add;
output reg [4:0] num_sub;
// Module vars
reg [31:0] temp_divisor;
reg count_clk = 0;
reg [4:0] count;
// Module logic
always @(posedge clk) begin
if (ready == 1) begin
done = 0;
count = 0;
q = 0;
num_add = 0;
num_sub = 0;
rem = dividend;
temp_divisor = divisor;
if (count_clk == 0) begin
temp_divisor = temp_divisor << (m - n);
count_clk = 1;
end
end else if (done == 0) begin
count_clk = 0;
if (count != m - n + 1) begin
if (rem[31] == 1) begin
num_add += 1;
rem = rem + temp_divisor;
q = q ^ 1;
q = (q << 1) | 1;
if (count != m - n) begin
temp_divisor = temp_divisor >> 1;
end
end else begin
num_sub += 1;
rem = rem - temp_divisor;
q = (q << 1) | 1;
if (count != m - n) begin
temp_divisor = (temp_divisor >> 1);
end
end
count++;
end else begin
if (rem[31] == 1) begin
num_add += 1;
rem <= rem + temp_divisor;
q <= q ^ 1;
end
done <= 1;
end
end
end
endmodule
| 7.389371
|
module divide (
clk,
new_inp,
dvdend,
len_a,
dvsor,
len_b,
quotient,
remainder,
count_add,
count_sub,
done
);
input clk;
input new_inp;
input [31:0] dvdend, dvsor;
input [4:0] len_a, len_b;
output reg [31:0] quotient, remainder;
output reg done;
output reg [4:0] count_add, count_sub;
wire [ 4:0] shift;
reg [ 1:0] state;
reg [31:0] dvsor_;
wire [ 5:0] iter_comp;
reg [ 5:0] iter_count;
wire [31:0] q_1, q_2;
initial begin
done <= 1;
state <= 2'b00;
quotient <= 0;
remainder <= 0;
count_add <= 0;
count_sub <= 0;
iter_count <= 0;
dvsor_ <= 0;
end
assign shift = len_a - len_b;
assign iter_comp = shift + 1;
assign q_1 = ((quotient ^ 1'b1) << 1) | 1;
assign q_2 = (quotient << 1) | 1;
always @(posedge clk) begin
if (state == 2'b00) begin
done <= 0;
count_add <= 0;
iter_count <= 0;
count_sub <= 0;
remainder <= dvdend;
quotient <= 0;
if (dvsor == 0) begin
// -1 to show that the division was invalid
quotient <= -1;
remainder <= -1;
state <= 2'b11;
end else if (len_a < len_b) begin
// Divident < Divisor (by bit length)
state <= 2'b11;
end else begin
// Aligning Dividor with Dividend
dvsor_ <= (dvsor << shift);
state <= 2'b01;
end
end else if (state == 2'b01) begin
if (iter_count != iter_comp) begin
// One Iteration of Division
if (remainder[31] == 1'b1) begin
// Negative Remainder
remainder <= remainder + dvsor_;
quotient <= q_1;
count_add <= count_add + 1;
end else begin
// Positive Remainder
remainder <= remainder - dvsor_;
quotient <= q_2;
count_sub <= count_sub + 1;
end
dvsor_ <= (dvsor_ >> 1);
iter_count <= iter_count + 1;
end else begin
state <= 2'b10;
end
end else if (state == 2'b10) begin
if (remainder[31] == 1'b1) begin
// Extra Correction Step
remainder <= remainder + dvsor;
quotient <= quotient ^ 1'b1;
count_add <= count_add + 1;
end
state <= 2'b11;
iter_count <= 0;
end else if (state == 2'b11) begin
// Last step to reset intermediate values and report other values
state <= 2'b00;
done <= 1;
end
end
endmodule
| 7.270098
|
module A1335Control (
input clock,
input reset,
input wire read_angle,
input wire read_status,
inout wire sda,
output wire scl,
output [2:0] LED,
input [6:0] device_id,
output reg done,
output reg [11:0] angle,
output reg [31:0] status,
output reg ack_error
);
reg rw;
reg busy;
reg ena;
reg ena_prev;
wire [7:0] byte_counter;
reg [31:0] data_rd;
wire [31:0] data_read_fifo;
reg [31:0] data_wd;
reg [7:0] number_of_bytes;
reg [4:0] gpio_set;
reg read_only;
reg [7:0] read_counter;
reg [7:0] a1335_state;
reg [7:0] a1335_next_state;
always @(posedge clock, posedge reset) begin : A1335_CONTROL_LOGIC
parameter IDLE = 0, WAIT_FOR_I2C_TRANSMISSION = 1, DONE = 2, READ_ANGLE = 3;
reg [7:0] command_counter;
if (reset == 1) begin
data_wd <= 0;
ena <= 0;
read_only <= 0;
a1335_state <= IDLE;
done <= 1;
angle <= 7;
end else begin
ena_prev <= ena;
case (a1335_state)
IDLE: begin
ena <= 0;
if (read_angle) begin // read that shit
a1335_state <= READ_ANGLE;
command_counter <= 0;
done <= 0;
end
end
READ_ANGLE: begin
if (command_counter < 2) begin
a1335_state <= WAIT_FOR_I2C_TRANSMISSION;
a1335_next_state <= READ_ANGLE;
rw <= 1;
case (command_counter)
0: begin
data_wd <= {8'h20, 8'h00, 16'h0000};
ena <= 1;
number_of_bytes <= 3;
end
1: begin
angle <= data_read_fifo[27:16];
fifo_read_ack <= 1;
end
default: data_wd <= 0;
endcase
end else begin
command_counter <= 0;
a1335_state <= DONE;
end
end
DONE: begin
a1335_state <= IDLE;
done <= 1;
end
WAIT_FOR_I2C_TRANSMISSION: begin
if (busy == 0 && ena == 0) begin
a1335_state <= a1335_next_state;
command_counter <= command_counter + 1;
end
end
default: a1335_state <= IDLE;
endcase
// if(read && ~waitrequest && address==1 && ~fifo_empty) begin
// fifo_read_ack <= 1;
// end
if (byte_counter >= number_of_bytes) begin
ena <= 0;
end
if (fifo_read_ack == 1) begin
fifo_read_ack <= 0;
end
if (ena_prev == 0 && ena == 1 && ~fifo_empty) begin
fifo_clear <= 1;
end
if (fifo_clear == 1) begin
fifo_clear <= 0;
end
end
end
wire fifo_write;
reg read_fifo;
reg write_fifo;
wire fifo_write_ack;
reg fifo_read_ack;
reg fifo_clear;
wire fifo_empty;
wire fifo_full;
wire [7:0] usedw;
fifo fifo (
.clock(clock),
.data(data_rd),
.rdreq(fifo_read_ack),
.sclr(reset || fifo_clear),
.wrreq(fifo_write),
.q(data_read_fifo),
.empty(fifo_empty),
.full(fifo_full),
.usedw(usedw)
);
oneshot oneshot (
.clk(clock),
.edge_sig(fifo_write_ack),
.level_sig(fifo_write)
);
i2c_master #(50000000, 400000) i2c (
.clk(clock),
.reset_n(~reset),
.ena(ena),
.addr(device_id),
.rw(rw),
.data_wr(data_wd),
.busy(busy),
.data_rd(data_rd),
.ack_error(ack_error),
.sda(sda),
.scl(scl),
.byte_counter(byte_counter),
.read_only(read_only),
.number_of_bytes(number_of_bytes),
.fifo_write_ack(fifo_write_ack)
);
endmodule
| 7.359394
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.