code
stringlengths
35
6.69k
score
float64
6.5
11.5
module H7432 #(.delay(6)) (A1,A2,A3,A4,B1,B2,B3,B4,Y1,Y2,Y3,Y4); input A1,A2,A3,A4,B1,B2,B3,B4; output Y1,Y2,Y3,Y4; assign #delay Y1 = A1 | B1; assign #delay Y2 = A2 | B2; assign #delay Y3 = A3 | B3; assign #delay Y4 = A4 | B4; endmodule
6.788071
module SN7470 ( J1, J2, K1, K2, _K, _J, _PRE, _CLR, CLK, Q, _Q, J, K, w1_1, w1_2, K_1, CLK_1, J_1, w2_1, w2_2, w3_1, w3_2, w4_1, w4_2 ); input J1, J2, K1, K2, _J, _K, _PRE, _CLR, CLK; output Q, _Q, J, K; output w1_1, w1_2, K_1, CLK_1, J_1, w2_1, w2_2, w3_1, w3_2, w4_1, w4_2; buf (K_1, ~_K); buf (J_1, ~_J); buf (CLK_1, ~CLK); nand (w1_1, K1, K2, K_1, _PRE, w3_1, Q); nand (w1_2, J1, J2, J_1, _CLR, w3_2, _Q); and (w2_1, w1_1, w3_2, w4_1); and (w2_2, w1_2, w3_1, w4_2); assign w3_1 = (w2_1 == 1'bx) ? CLK_1 : 1'bz; assign w3_2 = (w2_2 == 1'bx) ? CLK_1 : 1'bz; nand (w4_1, w3_1, _PRE, w4_2); nand (w4_2, w3_2, _CLR, w4_1); buf (_Q, ~w4_1); buf (Q, ~w4_2); endmodule
6.616599
module SN7408 ( A1, A2, A3, A4, B1, B2, B3, B4, Y1, Y2, Y3, Y4 ); input A1, A2, A3, A4, B1, B2, B3, B4; output Y1, Y2, Y3, Y4; and #18 g1 (Y1, A1, B1); and #18 g2 (Y2, A2, B2); and #18 g3 (Y3, A3, B3); and #18 g4 (Y4, A4, B4); endmodule
6.554127
module SN7404 ( A1, A2, A3, A4, A5, A6, Y1, Y2, Y3, Y4, Y5, Y6 ); input A1, A2, A3, A4, A5, A6; output Y1, Y2, Y3, Y4, Y5, Y6; not #12 g1 (Y1, A1); not #12 g2 (Y2, A2); not #12 g3 (Y3, A3); not #12 g4 (Y4, A4); not #12 g5 (Y5, A5); not #12 g6 (Y6, A6); endmodule
6.928863
module SN7403 ( A1, A2, A3, A4, B1, B2, B3, B4, Y1, Y2, Y3, Y4 ); input A1, A2, A3, A4, B1, B2, B3, B4; output Y1, Y2, Y3, Y4; nor (highz1, strong0) #35 g1 (Y1, A1, B1); nor (highz1, strong0) #35 g2 (Y2, A2, B2); nor (highz1, strong0) #35 g3 (Y3, A3, B3); nor (highz1, strong0) #35 g4 (Y4, A4, B4); endmodule
6.816974
module SN7400 ( A1, A2, A3, A4, B1, B2, B3, B4, Y1, Y2, Y3, Y4 ); input A1, A2, A3, A4, B1, B2, B3, B4; output Y1, Y2, Y3, Y4; nand #11 g1 (Y1, A1, B1); nand #11 g2 (Y2, A2, B2); nand #11 g3 (Y3, A3, B3); nand #11 g4 (Y4, A4, B4); endmodule
6.672456
module SN7412 ( A1, A2, A3, B1, B2, B3, C1, C2, C3, Y1, Y2, Y3 ); input A1, A2, A3, B1, B2, B3, C1, C2, C3; output Y1, Y2, Y3; nand (highz1, strong0) #35 g1 (Y1, A1, B1, C1); nand (highz1, strong0) #35 g2 (Y2, A2, B2, C2); nand (highz1, strong0) #35 g3 (Y3, A3, B3, C3); endmodule
6.723422
module SN7409 ( A1, A2, A3, A4, B1, B2, B3, B4, Y1, Y2, Y3, Y4 ); input A1, A2, A3, A4, B1, B2, B3, B4; output Y1, Y2, Y3, Y4; and(highz1, strong0) #21 g1 (Y1, A1, B1); and(highz1, strong0) #21 g2 (Y2, A2, B2); and(highz1, strong0) #21 g3 (Y3, A3, B3); and(highz1, strong0) #21 g4 (Y4, A4, B4); endmodule
6.533436
module SN7415 ( A1, A2, A3, B1, B2, B3, C1, C2, C3, Y1, Y2, Y3 ); input A1, A2, A3, B1, B2, B3, C1, C2, C3; output Y1, Y2, Y3; and(highz1, strong0) #40 g1 (Y1, A1, B1, C1); and(highz1, strong0) #40 g2 (Y2, A2, B2, C2); and(highz1, strong0) #40 g3 (Y3, A3, B3, C3); endmodule
6.960009
module SN7402 ( A1, A2, A3, A4, B1, B2, B3, B4, Y1, Y2, Y3, Y4 ); input A1, A2, A3, A4, B1, B2, B3, B4; output Y1, Y2, Y3, Y4; nor #12 g1 (Y1, A1, B1); nor #12 g2 (Y2, A2, B2); nor #12 g3 (Y3, A3, B3); nor #12 g4 (Y4, A4, B4); endmodule
7.099925
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? (~displacement) : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? '0 : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? '1 : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (~(sub ? (~B) : B))); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : '0); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : '1); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = ((!memory) ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (0 ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (1 ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module _80_74AC283_add ( A, B, Y ); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 4; parameter B_WIDTH = 4; parameter Y_WIDTH = 4; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; wire _TECHMAP_FAIL_ = Y_WIDTH <= 1; localparam WIDTH = ((Y_WIDTH + 3) / 4) * 4; wire [Y_WIDTH-1:0] A_buf, B_buf; \$pos #( .A_SIGNED(A_SIGNED), .A_WIDTH (A_WIDTH), .Y_WIDTH (Y_WIDTH) ) A_conv ( .A(A), .Y(A_buf) ); \$pos #( .A_SIGNED(B_SIGNED), .A_WIDTH (B_WIDTH), .Y_WIDTH (Y_WIDTH) ) B_conv ( .A(B), .Y(B_buf) ); wire [WIDTH-1:0] AA = A_buf; wire [WIDTH-1:0] BB = B_buf; wire [WIDTH-1:0] YY; wire [ WIDTH:0] C; assign C[0] = 0; genvar i; generate for (i = 0; i < WIDTH; i = i + 4) begin : slice \74AC283_1x1ADD4 adder_i ( .A (AA[i+3:i]), .B (BB[i+3:i]), .CI(C[i]), .S (YY[i+3:i]), .CO(C[i+4]), ); end endgenerate assign Y = YY[Y_WIDTH-1:0]; endmodule
7.565105
module _80_74AC283_sub ( A, B, Y ); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 4; parameter B_WIDTH = 4; parameter Y_WIDTH = 4; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; wire _TECHMAP_FAIL_ = Y_WIDTH <= 1; localparam WIDTH = ((Y_WIDTH + 3) / 4) * 4; wire [Y_WIDTH-1:0] A_buf, B_buf; \$pos #( .A_SIGNED(A_SIGNED), .A_WIDTH (A_WIDTH), .Y_WIDTH (Y_WIDTH) ) A_conv ( .A(A), .Y(A_buf) ); \$pos #( .A_SIGNED(B_SIGNED), .A_WIDTH (B_WIDTH), .Y_WIDTH (Y_WIDTH) ) B_conv ( .A(B), .Y(B_buf) ); wire [WIDTH-1:0] AA = A_buf; wire [WIDTH-1:0] BB = B_buf; wire [WIDTH-1:0] YY; wire [ WIDTH:0] C; assign C[0] = 1; genvar i; generate for (i = 0; i < WIDTH; i = i + 4) begin : slice \74AC283_1x1ADD4 adder_i ( .A (AA[i+3:i]), .B (~BB[i+3:i]), .CI(C[i]), .S (YY[i+3:i]), .CO(C[i+4]), ); end endgenerate assign Y = YY[Y_WIDTH-1:0]; endmodule
7.716298
module _80_74HC85_lt ( A, B, Y ); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 0; parameter B_WIDTH = 0; parameter Y_WIDTH = 0; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; wire _TECHMAP_FAIL_ = A_WIDTH <= 3 && B_WIDTH <= 3; localparam MAX_WIDTH = (A_WIDTH > B_WIDTH) ? A_WIDTH : B_WIDTH; localparam WIDTH = ((MAX_WIDTH + 3) / 4) * 4; wire [MAX_WIDTH-1:0] A_buf, B_buf; \$pos #( .A_SIGNED(A_SIGNED), .A_WIDTH (A_WIDTH), .Y_WIDTH (MAX_WIDTH) ) A_conv ( .A(A), .Y(A_buf) ); \$pos #( .A_SIGNED(B_SIGNED), .A_WIDTH (B_WIDTH), .Y_WIDTH (MAX_WIDTH) ) B_conv ( .A(B), .Y(B_buf) ); wire [WIDTH-1:0] AA = A_buf; wire [WIDTH-1:0] BB = B_buf; wire [ WIDTH:0] G; wire [ WIDTH:0] E; wire [ WIDTH:0] L; assign G[0] = 0; assign E[0] = 1; assign L[0] = 0; genvar i; generate for (i = 0; i < WIDTH; i = i + 4) begin : slice \74HC85_1x1CMP4 cmp_i ( .A (AA[i+3:i]), .B (BB[i+3:i]), .Li(L[i]), .Ei(E[i]), .Gi(G[i]), .Lo(L[i+4]), .Eo(E[i+4]), .Go(G[i+4]) ); end endgenerate assign Y = L[WIDTH]; endmodule
7.847335
module _80_74HC85_gt ( A, B, Y ); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 0; parameter B_WIDTH = 0; parameter Y_WIDTH = 0; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; wire _TECHMAP_FAIL_ = A_WIDTH <= 3 && B_WIDTH <= 3; localparam MAX_WIDTH = (A_WIDTH > B_WIDTH) ? A_WIDTH : B_WIDTH; localparam WIDTH = ((MAX_WIDTH + 3) / 4) * 4; wire [MAX_WIDTH-1:0] A_buf, B_buf; \$pos #( .A_SIGNED(A_SIGNED), .A_WIDTH (A_WIDTH), .Y_WIDTH (MAX_WIDTH) ) A_conv ( .A(A), .Y(A_buf) ); \$pos #( .A_SIGNED(B_SIGNED), .A_WIDTH (B_WIDTH), .Y_WIDTH (MAX_WIDTH) ) B_conv ( .A(B), .Y(B_buf) ); wire [WIDTH-1:0] AA = A_buf; wire [WIDTH-1:0] BB = B_buf; wire [ WIDTH:0] G; wire [ WIDTH:0] E; wire [ WIDTH:0] L; assign G[0] = 0; assign E[0] = 1; assign L[0] = 0; genvar i; generate for (i = 0; i < WIDTH; i = i + 4) begin : slice \74HC85_1x1CMP4 cmp_i ( .A (AA[i+3:i]), .B (BB[i+3:i]), .Li(L[i]), .Ei(E[i]), .Gi(G[i]), .Lo(L[i+4]), .Eo(E[i+4]), .Go(G[i+4]) ); end endgenerate assign Y = G[WIDTH]; endmodule
7.90402
module _80_74HC85_le ( A, B, Y ); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 0; parameter B_WIDTH = 0; parameter Y_WIDTH = 0; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; wire _TECHMAP_FAIL_ = A_WIDTH <= 3 && B_WIDTH <= 3; localparam MAX_WIDTH = (A_WIDTH > B_WIDTH) ? A_WIDTH : B_WIDTH; localparam WIDTH = ((MAX_WIDTH + 3) / 4) * 4; wire [MAX_WIDTH-1:0] A_buf, B_buf; \$pos #( .A_SIGNED(A_SIGNED), .A_WIDTH (A_WIDTH), .Y_WIDTH (MAX_WIDTH) ) A_conv ( .A(A), .Y(A_buf) ); \$pos #( .A_SIGNED(B_SIGNED), .A_WIDTH (B_WIDTH), .Y_WIDTH (MAX_WIDTH) ) B_conv ( .A(B), .Y(B_buf) ); wire [WIDTH-1:0] AA = A_buf; wire [WIDTH-1:0] BB = B_buf; wire [ WIDTH:0] G; wire [ WIDTH:0] E; wire [ WIDTH:0] L; assign G[0] = 0; assign E[0] = 1; assign L[0] = 0; genvar i; generate for (i = 0; i < WIDTH; i = i + 4) begin : slice \74HC85_1x1CMP4 cmp_i ( .A (AA[i+3:i]), .B (BB[i+3:i]), .Li(L[i]), .Ei(E[i]), .Gi(G[i]), .Lo(L[i+4]), .Eo(E[i+4]), .Go(G[i+4]) ); end endgenerate assign Y = !G[WIDTH]; endmodule
7.831979
module _80_74HC85_ge ( A, B, Y ); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 0; parameter B_WIDTH = 0; parameter Y_WIDTH = 0; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; wire _TECHMAP_FAIL_ = A_WIDTH <= 3 && B_WIDTH <= 3; localparam MAX_WIDTH = (A_WIDTH > B_WIDTH) ? A_WIDTH : B_WIDTH; localparam WIDTH = ((MAX_WIDTH + 3) / 4) * 4; wire [MAX_WIDTH-1:0] A_buf, B_buf; \$pos #( .A_SIGNED(A_SIGNED), .A_WIDTH (A_WIDTH), .Y_WIDTH (MAX_WIDTH) ) A_conv ( .A(A), .Y(A_buf) ); \$pos #( .A_SIGNED(B_SIGNED), .A_WIDTH (B_WIDTH), .Y_WIDTH (MAX_WIDTH) ) B_conv ( .A(B), .Y(B_buf) ); wire [WIDTH-1:0] AA = A_buf; wire [WIDTH-1:0] BB = B_buf; wire [ WIDTH:0] G; wire [ WIDTH:0] E; wire [ WIDTH:0] L; assign G[0] = 0; assign E[0] = 1; assign L[0] = 0; genvar i; generate for (i = 0; i < WIDTH; i = i + 4) begin : slice \74HC85_1x1CMP4 cmp_i ( .A (AA[i+3:i]), .B (BB[i+3:i]), .Li(L[i]), .Ei(E[i]), .Gi(G[i]), .Lo(L[i+4]), .Eo(E[i+4]), .Go(G[i+4]) ); end endgenerate assign Y = !L[WIDTH]; endmodule
7.79516
module _80_74AC161_counter ( rst, clk, preset, counter ); parameter _TECHMAP_CELLTYPE_ = ""; parameter WIDTH = (_TECHMAP_CELLTYPE_ == "_74xx_counter8") ? 8 : (_TECHMAP_CELLTYPE_ == "_74xx_counter16" ? 16 : 32) ; input rst; input clk; input [WIDTH-1:0] preset; output reg [WIDTH-1:0] counter; wire [WIDTH:0] C; assign C[0] = 1'b1; genvar i; generate for (i = 0; i < WIDTH; i = i + 4) begin : slice \74AC161_1x1COUNT4 counter_i ( .A(preset[i+3:i]), .Q(counter[i+3:i]), .CLK(clk), .ENT(C[i]), .RCO(C[i+4]), .LOAD(rst) ); end endgenerate endmodule
7.27201
module _80_74HC688_eq ( A, B, Y ); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 0; parameter B_WIDTH = 0; parameter Y_WIDTH = 0; parameter _TECHMAP_CONSTMSK_A_ = 0; parameter _TECHMAP_CONSTVAL_A_ = 0; parameter _TECHMAP_CONSTMSK_B_ = 0; parameter _TECHMAP_CONSTVAL_B_ = 0; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; wire _TECHMAP_FAIL_ = (A_WIDTH <= 6 && B_WIDTH <= 6) || &_TECHMAP_CONSTMSK_A_ || &_TECHMAP_CONSTMSK_B_; localparam WIDTH = ((Y_WIDTH + 7) / 8) * 8; wire [Y_WIDTH-1:0] A_buf, B_buf; \$pos #( .A_SIGNED(A_SIGNED), .A_WIDTH (A_WIDTH), .Y_WIDTH (Y_WIDTH) ) A_conv ( .A(A), .Y(A_buf) ); \$pos #( .A_SIGNED(B_SIGNED), .A_WIDTH (B_WIDTH), .Y_WIDTH (Y_WIDTH) ) B_conv ( .A(B), .Y(B_buf) ); wire [WIDTH-1:0] AA = A_buf; wire [WIDTH-1:0] BB = B_buf; wire [WIDTH-1:0] YY; wire [ WIDTH:0] C; assign C[0] = 0; genvar i; generate for (i = 0; i < WIDTH; i = i + 8) begin : slice \74HC688_1x1EQ8 eq_i ( .A(AA[i+7:i]), .B(BB[i+7:i]), .E(C[i]), .Q(C[i+8]) ); end endgenerate assign Y = !C[WIDTH]; endmodule
7.267959
module _80_74HC688_ne ( A, B, Y ); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 0; parameter B_WIDTH = 0; parameter Y_WIDTH = 0; parameter _TECHMAP_CONSTMSK_A_ = 0; parameter _TECHMAP_CONSTVAL_A_ = 0; parameter _TECHMAP_CONSTMSK_B_ = 0; parameter _TECHMAP_CONSTVAL_B_ = 0; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; wire _TECHMAP_FAIL_ = (A_WIDTH <= 6 && B_WIDTH <= 6) || &_TECHMAP_CONSTMSK_A_ || &_TECHMAP_CONSTMSK_B_; localparam WIDTH = ((Y_WIDTH + 7) / 8) * 8; wire [Y_WIDTH-1:0] A_buf, B_buf; \$pos #( .A_SIGNED(A_SIGNED), .A_WIDTH (A_WIDTH), .Y_WIDTH (Y_WIDTH) ) A_conv ( .A(A), .Y(A_buf) ); \$pos #( .A_SIGNED(B_SIGNED), .A_WIDTH (B_WIDTH), .Y_WIDTH (Y_WIDTH) ) B_conv ( .A(B), .Y(B_buf) ); wire [WIDTH-1:0] AA = A_buf; wire [WIDTH-1:0] BB = B_buf; wire [WIDTH-1:0] YY; wire [ WIDTH:0] C; assign C[0] = 0; genvar i; generate for (i = 0; i < WIDTH; i = i + 8) begin : slice \74HC688_1x1EQ8 eq_i ( .A(AA[i+7:i]), .B(BB[i+7:i]), .E(C[i]), .Q(C[i+8]) ); end endgenerate assign Y = C[WIDTH]; endmodule
7.502298
module _74xx_counter8 ( input rst, input clk, input [7:0] preset, output reg [7:0] counter ); always @(posedge clk) begin if (!rst) begin counter <= preset; end else begin counter <= counter + 1'b1; end end endmodule
7.761956
module _74xx_counter16 ( input rst, input clk, input [15:0] preset, output reg [15:0] counter ); always @(posedge clk) begin if (!rst) begin counter <= preset; end else begin counter <= counter + 1'b1; end end endmodule
7.761956
module _74xx_counter32 ( input rst, input clk, input [32:0] preset, output reg [31:0] counter ); always @(posedge clk) begin if (!rst) begin counter <= preset; end else begin counter <= counter + 1'b1; end end endmodule
7.761956
module \74HC85_1x1CMP4 ( A, B, Li, Ei, Gi, Lo, Eo, Go ); input [3:0] A; input [3:0] B; input Li, Ei, Gi; output Lo, Eo, Go; assign Lo = (A < B) || (A == B && !Gi && !Ei); assign Go = (A > B) || (A == B && !Li && !Ei); assign Eo = (A == B) && Ei; endmodule
7.450051
module \74AC161_1x1COUNT4 ( A, Q, RCO, ENT, CLK, LOAD ); input [3:0] A; input CLK; input ENT; input LOAD; output reg [3:0] Q; output RCO; assign RCO = Q == 4'b1111; always @(posedge CLK) begin if (!LOAD) begin Q <= A; end else if (ENT) begin Q <= Q + 1'b1; end end endmodule
7.267505
module top_module ( input a, input b, input c, input d, output out ); assign out = a | (c & ~b); endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = (~((A + ALU_op2) + sub)); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = '0; always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = '1; always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module top_module ( input a, input b, input c, input d, output out ); assign out = a ^ b ^ c ^ d; endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = (((-A) + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = (('0 + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = (('1 + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + (-ALU_op2)) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + '0) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + '1) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A - ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A * ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A / ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A % ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module top_module ( input a, input b, input c, input d, output out_sop, output out_pos ); assign out_sop = (c & d) | (~a & ~b & c); assign out_pos = (c) & (~a | b) & (d | ~b); endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((-(A + ALU_op2)) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ('0 + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ('1 + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + (-sub)); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + '0); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + '1); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) - sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) * sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) / sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) % sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module top_module ( input [4:1] x, output f ); assign f = (x[3] & ~x[1]) | (~x[3] & x[1] & x[2]); endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge (!clk)) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge 0) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge 1) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module top_module ( input [4:1] x, output f ); assign f = (x[3] & ~x[1]) | (x[2] & x[3] & x[4]) | (~x[4] & ~x[2]); endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = (~0); else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = '0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = '1; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module RAM ( //input: clk, wen, din, addr, dout ); parameter DWIDTH = 16; //数据宽度,请根据实际情况修改 parameter AWIDTH = 4; //地址宽度,请根据实际情况修改 input clk; input wen; input [DWIDTH -1:0] din; input [AWIDTH -1:0] addr; output [DWIDTH -1:0] dout; reg [DWIDTH-1:0] RAM[AWIDTH ** 2 - 1:0]; integer RAM_index; initial begin for (RAM_index = 0; RAM_index < 16; RAM_index = RAM_index + 1) begin RAM[RAM_index] <= RAM_index + 1; end end always @(posedge clk) begin if (wen) RAM[addr] <= din; end assign dout = RAM[addr]; endmodule
8.249395
module top ( input clk, output [7:0] pmod ); // Wiring external pins. reg [6:0] seg_pins_n; reg digit_sel; assign pmod[6:0] = seg_pins_n; assign pmod[7] = digit_sel; // counter increments at clk = 8 MHz. reg [29:0] counter; wire [ 3:0] ones = counter[20+:4]; wire [ 3:0] tens = counter[24+:4]; wire [ 2:0] display_state = counter[2+:3]; reg [ 6:0] ones_segments; reg [ 6:0] tens_segments; digit_to_segments ones2segs ( clk, ones, ones_segments ); digit_to_segments tens2segs ( clk, tens, tens_segments ); always @(posedge clk) begin counter <= counter + 1; // Switch seg_pins_n off during digit_sel transitions // to prevent flicker. Each digit has 25% duty cycle. case (display_state) 0, 1: seg_pins_n <= ~ones_segments; 2: seg_pins_n <= ~0; 3: digit_sel <= 0; 4, 5: seg_pins_n <= ~tens_segments; 6: seg_pins_n <= ~0; 7: digit_sel <= 1; endcase end endmodule
7.233807
module digit_to_segments ( input clk, input [3:0] digit, output reg [6:0] segments ); always @(posedge clk) case (digit) 0: segments <= 7'b0111111; 1: segments <= 7'b0000110; 2: segments <= 7'b1011011; 3: segments <= 7'b1001111; 4: segments <= 7'b1100110; 5: segments <= 7'b1101101; 6: segments <= 7'b1111101; 7: segments <= 7'b0000111; 8: segments <= 7'b1111111; 9: segments <= 7'b1101111; 4'hA: segments <= 7'b1110111; 4'hB: segments <= 7'b1111100; 4'hC: segments <= 7'b0111001; 4'hD: segments <= 7'b1011110; 4'hE: segments <= 7'b1111001; 4'hF: segments <= 7'b1110001; endcase endmodule
6.980582
module m_7segled ( w_in, r_led ); input wire [3:0] w_in; output reg [6:0] r_led; always @(*) begin case (w_in) 4'd0: r_led <= 7'b1111110; 4'd1: r_led <= 7'b0110000; 4'd2: r_led <= 7'b1101101; 4'd3: r_led <= 7'b1111001; 4'd4: r_led <= 7'b0110011; 4'd5: r_led <= 7'b1011011; 4'd6: r_led <= 7'b1011111; 4'd7: r_led <= 7'b1110000; 4'd8: r_led <= 7'b1111111; 4'd9: r_led <= 7'b1111011; default: r_led <= 7'b0000000; endcase end endmodule
7.193795
module m_7segcon ( w_clk, w_din, r_sg, r_an ); input wire w_clk; input wire [31:0] w_din; output reg [6:0] r_sg; // cathode segments output reg [7:0] r_an; // common anode reg [31:0] r_val = 0; reg [31:0] r_cnt = 0; reg [ 3:0] r_in = 0; reg [ 2:0] r_digit = 0; always @(posedge w_clk) r_val <= w_din; always @(posedge w_clk) begin r_cnt <= (r_cnt >= (`DELAY7SEG - 1)) ? 0 : r_cnt + 1; if (r_cnt == 0) begin r_digit <= r_digit + 1; if (r_digit == 0) begin r_an <= 8'b11111110; r_in <= r_val % 10; end else if (r_digit == 1) begin r_an <= 8'b11111101; r_in <= (r_val / 10) % 10; end else if (r_digit == 2) begin r_an <= 8'b11111011; r_in <= (r_val / 100) % 10; end else if (r_digit == 3) begin r_an <= 8'b11110111; r_in <= (r_val / 1000) % 10; end else if (r_digit == 4) begin r_an <= 8'b11101111; r_in <= (r_val / 10000) % 10; end else if (r_digit == 5) begin r_an <= 8'b11011111; r_in <= (r_val / 100000) % 10; end else if (r_digit == 6) begin r_an <= 8'b10111111; r_in <= (r_val / 1000000) % 10; end else begin r_an <= 8'b01111111; r_in <= (r_val / 10000000) % 10; end end end wire [6:0] w_segments; m_7segled m_7segled ( r_in, w_segments ); always @(posedge w_clk) r_sg <= ~w_segments; endmodule
7.442382
module sevenSegConv ( num, out1, out2 ); input [31:0] num; output [6:0] out1, out2; wire [31:0] numLower = num / 10; wire [31:0] numUpper = num % 10; assign out1 = (numLower == 32'd0) ? 7'b1000000: (numLower == 32'd1) ? 7'b1001111: (numLower == 32'd2) ? 7'b0100100: (numLower == 32'd3) ? 7'b0110000: (numLower == 32'd4) ? 7'b0011001: (numLower == 32'd5) ? 7'b0010010: (numLower == 32'd6) ? 7'b0000010: (numLower == 32'd7) ? 7'b1111000: (numLower == 32'd8) ? 7'b0000000: (numLower == 32'd9) ? 7'b0010000: 7'b1111111; assign out2 = (numUpper == 32'd0) ? 7'b1000000: (numUpper == 32'd1) ? 7'b1001111: (numUpper == 32'd2) ? 7'b0100100: (numUpper == 32'd3) ? 7'b0110000: (numUpper == 32'd4) ? 7'b0011001: (numUpper == 32'd5) ? 7'b0010010: (numUpper == 32'd6) ? 7'b0000010: (numUpper == 32'd7) ? 7'b1111000: (numUpper == 32'd8) ? 7'b0000000: (numUpper == 32'd9) ? 7'b0010000: 7'b1111111; endmodule
6.977727
module top ( input clk, input RESET, output LED0, output LED1, output LED2, output LED3, output LED4, output LED5, output LED6, output LED7, output A, output B, output C, output D, output E, output F, output G, output DP, output C0, output C1, output C2, ); localparam CLKDIV = 21; localparam REFCLK = 16; reg [CLKDIV:0] clkdiv; reg [REFCLK:0] refclk; reg [1:0] state; reg [2:0] com_driv; reg [11:0] counter; reg dot; reg [7:0] sevenseg; wire [7:0] bcdwire1; wire [7:0] bcdwire2; wire [7:0] bcdwire3; bcdto7seg dec1 (counter[3:0], bcdwire1, dot, clk); bcdto7seg dec2 (counter[7:4], bcdwire2, dot, clk); bcdto7seg dec3 (counter[11:8], bcdwire3, dot, clk); always@(posedge clk) begin clkdiv <= clkdiv + 1; refclk <= refclk + 1; if (RESET == 0) begin counter <= 0; clkdiv <= 0; end if (clkdiv[CLKDIV]) begin clkdiv <= 0; counter <= counter + 1; dot <= 0; end if (refclk[REFCLK]) begin refclk <= 0; state <= state + 1; if(state == 3) state <= 0; case (state) 0: begin com_driv <= 3'b100; sevenseg <= bcdwire1; end 1: begin com_driv <= 3'b010; sevenseg <= bcdwire2; end 2: begin com_driv <= 3'b001; sevenseg <= bcdwire3; end endcase // case (state) end // if (refclk[REFCLK]) end // always@ (posedge clk) assign {LED0, LED1, LED2, LED3, LED4, LED5, LED6, LED7} = sevenseg; assign {A, B, C, D, E, F, G, DP} = ~sevenseg; assign {C2, C1, C0} = com_driv; endmodule
6.557014
module bcdto7seg ( bcd, sevenseg, dot ); input [3:0] bcd; input dot; output reg [7:0] sevenseg; always @(bcd, dot) begin case (bcd) 4'h0: sevenseg <= 8'b11111100 | dot; 4'h1: sevenseg <= 8'b01100000 | dot; 4'h2: sevenseg <= 8'b11011010 | dot; 4'h3: sevenseg <= 8'b11110010 | dot; 4'h4: sevenseg <= 8'b01100110 | dot; 4'h5: sevenseg <= 8'b10110110 | dot; 4'h6: sevenseg <= 8'b00111110 | dot; 4'h7: sevenseg <= 8'b11100000 | dot; 4'h8: sevenseg <= 8'b11111110 | dot; 4'h9: sevenseg <= 8'b11100110 | dot; 4'ha: sevenseg <= 8'b11111010 | dot; 4'hb: sevenseg <= 8'b00111110 | dot; 4'hc: sevenseg <= 8'b00011010 | dot; 4'hd: sevenseg <= 8'b01111010 | dot; 4'he: sevenseg <= 8'b10011010 | dot; 4'hf: sevenseg <= 8'b10001010 | dot; endcase // case (bcd) end // always @ (posedge set) endmodule
7.041565
module DFF ( clk, rst_n, Q, D ); parameter width = 4; parameter init = 0; input clk, rst_n; input [width-1:0] D; output reg [width-1:0] Q; always @(posedge clk or posedge rst_n) begin if (rst_n) begin Q <= init; end else begin Q <= D; end end endmodule
8.191977
module Seven_Segment_display_decoder ( BCD, DISPLAY ); input [3:0] BCD; output reg [6:0] DISPLAY; always @* begin case (BCD) 4'd0: DISPLAY = 7'b1000000; 4'd1: DISPLAY = 7'b1111001; 4'd2: DISPLAY = 7'b0100100; 4'd3: DISPLAY = 7'b0110000; 4'd4: DISPLAY = 7'b0011001; 4'd5: DISPLAY = 7'b0010010; 4'd6: DISPLAY = 7'b0000010; 4'd7: DISPLAY = 7'b1111000; 4'd8: DISPLAY = 7'b0000000; 4'd9: DISPLAY = 7'b0010000; default: DISPLAY = 7'b1111111; endcase end endmodule
7.463488
module Seven_Segment_display ( clk, reset, BCD, DIGIT, DISPLAY_OUT ); input clk; input reset; input [15:0] BCD; output reg [3:0] DIGIT; output reg [6:0] DISPLAY_OUT; wire [6:0] DISPLAY[3:0]; /* Seven Segment Display */ Seven_Segment_display_decoder SSDD0 ( BCD[3:0], DISPLAY[0] ); Seven_Segment_display_decoder SSDD1 ( BCD[7:4], DISPLAY[1] ); Seven_Segment_display_decoder SSDD2 ( BCD[11:8], DISPLAY[2] ); Seven_Segment_display_decoder SSDD3 ( BCD[15:12], DISPLAY[3] ); wire [2:0] curr_count; reg [2:0] next_count; DFF #(3, 3'd0) SEG7DFF ( clk, reset, curr_count, next_count ); always @(*) begin case (curr_count) 2'b00: begin next_count = 2'b01; DIGIT = 4'b1110; DISPLAY_OUT = DISPLAY[0]; end 2'b01: begin next_count = 2'b10; DIGIT = 4'b1101; DISPLAY_OUT = DISPLAY[1]; end 2'b10: begin next_count = 2'b11; DIGIT = 4'b1011; DISPLAY_OUT = DISPLAY[2]; end 2'b11: begin next_count = 2'b00; DIGIT = 4'b0111; DISPLAY_OUT = DISPLAY[3]; end endcase end endmodule
7.463488
module bin_7segment_tb (); reg clk = 1'b0; reg [15:0] sw = 'b0; wire [6:0] seg; wire [3:0] an; wire dp; always #1 clk <= ~clk; always #40 sw <= sw + 1; initial begin #1000; $finish(); end initial begin $display(" "); $display("----------------------------------------------"); $display(" Starting Testbench..."); $dumpfile("wave.vcd"); $dumpvars(0); $display("----------------------------------------------"); $display(" "); end bin_7segment test_unit1 ( .clk(clk), .sw (sw), .seg(seg), .an (an), .dp (dp) ); endmodule
7.046124
module top ( input CLK, output P1A1, output P1A2, output P1A3, output P1A4, output P1A7, output P1A8, output P1A9, output P1A10 ); // Wiring external pins. reg [6:0] seg_pins_n; reg digit_sel; assign {P1A9, P1A8, P1A7, P1A4, P1A3, P1A2, P1A1} = seg_pins_n; assign P1A10 = digit_sel; // counter increments at CLK = 12 MHz. // ones digit increments at ~6Hz. // display refreshes at 375 KHz. reg [29:0] counter; wire [ 3:0] ones = counter[21+:4]; wire [ 3:0] tens = counter[25+:4]; wire [ 2:0] display_state = counter[2+:3]; reg [ 6:0] ones_segments; reg [ 6:0] tens_segments; digit_to_segments ones2segs ( CLK, ones, ones_segments ); digit_to_segments tens2segs ( CLK, tens, tens_segments ); always @(posedge CLK) begin counter <= counter + 1; // Switch seg_pins_n off during digit_sel transitions // to prevent flicker. Each digit has 25% duty cycle. case (display_state) 0, 1: seg_pins_n <= ~ones_segments; 2: seg_pins_n <= ~0; 3: digit_sel <= 0; 4, 5: seg_pins_n <= ~tens_segments; 6: seg_pins_n <= ~0; 7: digit_sel <= 1; endcase end endmodule
7.233807
module digit_to_segments ( input clk, input [3:0] digit, output reg [6:0] segments ); always @(posedge clk) case (digit) 0: segments <= 7'b0111111; 1: segments <= 7'b0000110; 2: segments <= 7'b1011011; 3: segments <= 7'b1001111; 4: segments <= 7'b1100110; 5: segments <= 7'b1101101; 6: segments <= 7'b1111101; 7: segments <= 7'b0000111; 8: segments <= 7'b1111111; 9: segments <= 7'b1101111; 4'hA: segments <= 7'b1110111; 4'hB: segments <= 7'b1111100; 4'hC: segments <= 7'b0111001; 4'hD: segments <= 7'b1011110; 4'hE: segments <= 7'b1111001; 4'hF: segments <= 7'b1110001; endcase endmodule
6.980582
module seg_dec_tb; reg [3:0] n; wire [6:0] ag; seg_dec seg_dec ( .num(n), .a_g(ag) ); initial begin n <= 4'b0000; #120 $stop; end always #10 n <= n + 1; initial begin $dumpfile("seg_dec_tb.vcd"); $dumpvars; end endmodule
6.75538
module seven_seg_Dev_IO ( input clk, input rst, input GPIOe0000000_we, input [2:0] Test, input [31:0] disp_cpudata, input [31:0] Test_data0, input [31:0] Test_data1, input [31:0] Test_data2, input [31:0] Test_data3, input [31:0] Test_data4, input [31:0] Test_data5, input [31:0] Test_data6, output [31:0] disp_num ); endmodule
6.696936
module seven_seg_display ( input clk, output reg [2:0] ca, ); initial begin ca = 3'b110; end reg [17:0] count; always @(posedge clk) begin count <= count + 1; if(count[17]) begin count <= 0; ca <= {ca[1:0], ca[2]}; end end endmodule
6.903527
module SevenSegLed ( input clk, input [31:0] data, output reg LED_DATA, LED_SCK, LED_RCK ); reg [ 3:0] shift; reg [ 2:0] digit; wire [ 3:0] d = data >> digit * 4; wire [ 7:0] c = led_code(d); wire [ 7:0] a = 8'h80 >> digit; reg [15:0] out; reg [ 1:0] state; localparam ST_DATA = 0; localparam ST_RCK = 2; localparam ST_SCK = 3; always @(posedge clk) begin case (state) ST_DATA: begin LED_DATA <= out[shift]; LED_SCK <= 1'b1; LED_RCK <= 1'b0; state <= ST_SCK; end ST_SCK: begin LED_SCK <= 1'b0; if (shift == 0) begin shift <= 15; state <= ST_RCK; end else begin shift <= shift - 1; state <= ST_DATA; end end ST_RCK: begin LED_RCK <= 1'b1; digit <= digit + 1; out <= {a, ~c}; state <= ST_DATA; end endcase end function [7:0] led_code; input [3:0] in; case (in) 4'h0: led_code = 8'b00111111; 4'h1: led_code = 8'b00000110; 4'h2: led_code = 8'b01011011; 4'h3: led_code = 8'b01001111; 4'h4: led_code = 8'b01100110; 4'h5: led_code = 8'b01101101; 4'h6: led_code = 8'b01111101; 4'h7: led_code = 8'b00000111; 4'h8: led_code = 8'b01111111; 4'h9: led_code = 8'b01101111; 4'ha: led_code = 8'b01110111; 4'hb: led_code = 8'b00011111; 4'hc: led_code = 8'b00111001; 4'hd: led_code = 8'b01011110; 4'he: led_code = 8'b01111001; 4'hf: led_code = 8'b01110001; endcase endfunction endmodule
6.932944
module sseg_tb (); reg [3:0] in; wire [6:0] out; reg oe; sseg DUT ( .in(in), .out_q(out), .oe(oe) ); initial begin $dumpfile("sseg.vcd"); $dumpvars(0, sseg_tb); in = 0; oe = 1; #100 $finish; end always #5 in = in + 1; endmodule
6.67828
module seven_seg_manager_4digit ( input clk, input reset, input [6:0] d7s_0, d7s_1, d7s_2, d7s_3, output reg [3:0] anodo, output reg [6:0] segments ); //Lo ideal sera hacer un modulo _delay_ms(cuantos ms dura el delay) reg [2:0] selector = 2'd0; wire clock; clk_divider_7segment( clk, reset, clock ); always @(posedge clock) begin case (selector) 2'd0: begin anodo = 4'b0111; segments = d7s_0; end 2'd1: begin anodo = 4'b1011; segments = d7s_1; end 2'd2: begin anodo = 4'b1101; segments = d7s_2; end 2'd3: begin anodo = 4'b1110; segments = d7s_3; end default: begin anodo = 4'b0000; segments = 7'b1111111; end endcase selector <= selector + 1; end /*nicamente recibo los numeros de 7 bits que representan los digitos en 7segmentos y los hago alternar entre ellos para que aparente que estan encendidos al mismo tiempo*/ endmodule
7.171677
module Reg8_1 ( out, in, clk, ctrl ); input ctrl; output [7:0] out; input [7:0] in; reg [7:0] Regs; input clk; assign out[0] = Regs[0]; assign out[1] = Regs[1]; assign out[2] = Regs[2]; assign out[3] = Regs[3]; assign out[4] = Regs[4]; assign out[5] = Regs[5]; assign out[6] = Regs[6]; assign out[7] = Regs[7]; always @(posedge clk) begin if (!ctrl) begin Regs[0] <= in[0]; Regs[1] <= in[1]; Regs[2] <= in[2]; Regs[3] <= in[3]; Regs[4] <= in[4]; Regs[5] <= in[5]; Regs[6] <= in[6]; Regs[7] <= in[7]; end end endmodule
6.75854
module Reg8_2 ( out, in, clk ); output [7:0] out; input [7:0] in; reg [7:0] Regs; input clk; assign out[0] = Regs[0]; assign out[1] = Regs[1]; assign out[2] = Regs[2]; assign out[3] = Regs[3]; assign out[4] = Regs[4]; assign out[5] = Regs[5]; assign out[6] = Regs[6]; assign out[7] = Regs[7]; always @(posedge clk) begin Regs[0] <= in[0]; Regs[1] <= in[1]; Regs[2] <= in[2]; Regs[3] <= in[3]; Regs[4] <= in[4]; Regs[5] <= in[5]; Regs[6] <= in[6]; Regs[7] <= in[7]; end endmodule
6.827413
module testmul; reg [ 2:0] Shift_amt; reg [ 7:0] in; wire [15:0] out; Multiplier m1 ( out, in, Shift_amt ); initial begin Shift_amt = 3'b011; in = 8'b11101011; end endmodule
6.716264
module testcomp; reg [15:0] in; reg sign; wire [15:0] out; Complement cmp ( out, in, sign ); initial begin // in=16'b0110101111010011; // sign = 1'b1; // #10 $display ("out: %b",out); // sign = 1'b0; // #10 $display ("out: %b",out); // #10 $finish; end endmodule
6.940555
module Mux8 ( out, in1, in2, sel ); input [7:0] in1, in2; input sel; output [7:0] out; not n1 (selNot, sel); semimux m1 ( out[0], in1[0], in2[0], sel, selNot ); semimux m2 ( out[1], in1[1], in2[1], sel, selNot ); semimux m3 ( out[2], in1[2], in2[2], sel, selNot ); semimux m4 ( out[3], in1[3], in2[3], sel, selNot ); semimux m5 ( out[4], in1[4], in2[4], sel, selNot ); semimux m6 ( out[5], in1[5], in2[5], sel, selNot ); semimux m7 ( out[6], in1[6], in2[6], sel, selNot ); semimux m8 ( out[7], in1[7], in2[7], sel, selNot ); endmodule
6.721134
module testadder; // reg [7:0] in1,in2; // reg sign, ctrl; // wire [7:0] out; // Clock c(clk); // SerialAdder Add(out,clk,in1,in2,sign,ctrl); // initial begin // ctrl=1'b1; // sign=1'b1; // in1=8'b00101101; // in2=8'b11101111; // #10 ctrl=1'b0;in1=8'b00000000;in2=8'b00000000; // #10 in1=8'bxxxxxxxx; // #20 $finish; // end // always @(posedge clk) $display("out: %b",out); // endmodule
6.668018
module mux ( out, a, b, sel ); output out; input a, b, sel; not not1 (selNot, sel); semimux m1 ( out, a, b, sel, selNot ); endmodule
7.812393
module PE_Conv_test; reg [7:0] xOrW, yIn; reg [2:0] ctrl; wire [7:0] yOut, xOut; PE_Conv PE ( yOut, xOut, xOrW, yIn, clk, ctrl ); Clock c (clk); reg [3:0] W; reg [15:0] X1, X2, X3; reg [15:0] Y1, Y2, Y3; initial begin W = 4'b1011; X1 = 8'b10110101; X2 = 8'b11110000; X3 = 8'b11001100; Y1 = 16'b0101110111001101; Y2 = 16'b1010101010101010; Y3 = 16'b1100110011001100; ctrl = 3'b001; yIn = 1'b0; xOrW[3:0] = W; xOrW[7:4] = 4'b0000; //#10 $display("inserting X1");ctrl=3'b010;xOrW=X1;yIn=Y1[7:0]; #10 ctrl = 3'b100; yIn = Y1[15:8]; //#10 $display("inserting X2");ctrl=3'b010;xOrW=X2;yIn=Y2[7:0]; #10 ctrl = 3'b100; yIn = Y2[15:8]; //#10 $display("inserting X3");ctrl=3'b010;xOrW=X3;yIn=Y3[7:0]; #10 ctrl = 3'b100; yIn = Y3[15:8]; //#10 $display("inserting X4");ctrl=3'b010;xOrW=X1;yIn=Y1[7:0]; #10 ctrl = 3'b100; yIn = Y1[15:8]; //#10 $display("inserting X5");ctrl=3'b010;xOrW=X2;yIn=Y2[7:0]; #10 ctrl = 3'b100; yIn = Y2[15:8]; //#10 $display("inserting X6");ctrl=3'b010;xOrW=X3;yIn=Y3[7:0]; #10 ctrl = 3'b100; yIn = Y3[15:8]; //#10 $display("inserting don't care");ctrl=3'b010;xOrW=8'bxxxxxxxx;yIn=8'bxxxxxxxx; //#400 $finish; end //always @(posedge clk) $display("X:%b ,Y:%b",xOut,yOut); endmodule
6.683229
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if ((!rst)) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (0) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (1) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) begin end end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module tb (); reg a, b, c, d; wire w, x, y, z; bcd_ex3 dut ( a, b, c, d, w, x, y, z ); initial begin $monitor("@time %3d : when input is %b %b %b %b output is %b %b %b %b", $time, a, b, c, d, w, x, y, z); a = 0; b = 0; c = 0; d = 0; #100; a = 0; b = 0; c = 1; d = 1; #100; a = 0; b = 1; c = 0; d = 1; end endmodule
7.002324