code
stringlengths 35
6.69k
| score
float64 6.5
11.5
|
|---|---|
module H7432 #(.delay(6)) (A1,A2,A3,A4,B1,B2,B3,B4,Y1,Y2,Y3,Y4);
input A1,A2,A3,A4,B1,B2,B3,B4;
output Y1,Y2,Y3,Y4;
assign #delay Y1 = A1 | B1;
assign #delay Y2 = A2 | B2;
assign #delay Y3 = A3 | B3;
assign #delay Y4 = A4 | B4;
endmodule
| 6.788071
|
module SN7470 (
J1,
J2,
K1,
K2,
_K,
_J,
_PRE,
_CLR,
CLK,
Q,
_Q,
J,
K,
w1_1,
w1_2,
K_1,
CLK_1,
J_1,
w2_1,
w2_2,
w3_1,
w3_2,
w4_1,
w4_2
);
input J1, J2, K1, K2, _J, _K, _PRE, _CLR, CLK;
output Q, _Q, J, K;
output w1_1, w1_2, K_1, CLK_1, J_1, w2_1, w2_2, w3_1, w3_2, w4_1, w4_2;
buf (K_1, ~_K);
buf (J_1, ~_J);
buf (CLK_1, ~CLK);
nand (w1_1, K1, K2, K_1, _PRE, w3_1, Q);
nand (w1_2, J1, J2, J_1, _CLR, w3_2, _Q);
and (w2_1, w1_1, w3_2, w4_1);
and (w2_2, w1_2, w3_1, w4_2);
assign w3_1 = (w2_1 == 1'bx) ? CLK_1 : 1'bz;
assign w3_2 = (w2_2 == 1'bx) ? CLK_1 : 1'bz;
nand (w4_1, w3_1, _PRE, w4_2);
nand (w4_2, w3_2, _CLR, w4_1);
buf (_Q, ~w4_1);
buf (Q, ~w4_2);
endmodule
| 6.616599
|
module SN7408 (
A1,
A2,
A3,
A4,
B1,
B2,
B3,
B4,
Y1,
Y2,
Y3,
Y4
);
input A1, A2, A3, A4, B1, B2, B3, B4;
output Y1, Y2, Y3, Y4;
and #18 g1 (Y1, A1, B1);
and #18 g2 (Y2, A2, B2);
and #18 g3 (Y3, A3, B3);
and #18 g4 (Y4, A4, B4);
endmodule
| 6.554127
|
module SN7404 (
A1,
A2,
A3,
A4,
A5,
A6,
Y1,
Y2,
Y3,
Y4,
Y5,
Y6
);
input A1, A2, A3, A4, A5, A6;
output Y1, Y2, Y3, Y4, Y5, Y6;
not #12 g1 (Y1, A1);
not #12 g2 (Y2, A2);
not #12 g3 (Y3, A3);
not #12 g4 (Y4, A4);
not #12 g5 (Y5, A5);
not #12 g6 (Y6, A6);
endmodule
| 6.928863
|
module SN7403 (
A1,
A2,
A3,
A4,
B1,
B2,
B3,
B4,
Y1,
Y2,
Y3,
Y4
);
input A1, A2, A3, A4, B1, B2, B3, B4;
output Y1, Y2, Y3, Y4;
nor (highz1, strong0) #35 g1 (Y1, A1, B1);
nor (highz1, strong0) #35 g2 (Y2, A2, B2);
nor (highz1, strong0) #35 g3 (Y3, A3, B3);
nor (highz1, strong0) #35 g4 (Y4, A4, B4);
endmodule
| 6.816974
|
module SN7400 (
A1,
A2,
A3,
A4,
B1,
B2,
B3,
B4,
Y1,
Y2,
Y3,
Y4
);
input A1, A2, A3, A4, B1, B2, B3, B4;
output Y1, Y2, Y3, Y4;
nand #11 g1 (Y1, A1, B1);
nand #11 g2 (Y2, A2, B2);
nand #11 g3 (Y3, A3, B3);
nand #11 g4 (Y4, A4, B4);
endmodule
| 6.672456
|
module SN7412 (
A1,
A2,
A3,
B1,
B2,
B3,
C1,
C2,
C3,
Y1,
Y2,
Y3
);
input A1, A2, A3, B1, B2, B3, C1, C2, C3;
output Y1, Y2, Y3;
nand (highz1, strong0) #35 g1 (Y1, A1, B1, C1);
nand (highz1, strong0) #35 g2 (Y2, A2, B2, C2);
nand (highz1, strong0) #35 g3 (Y3, A3, B3, C3);
endmodule
| 6.723422
|
module SN7409 (
A1,
A2,
A3,
A4,
B1,
B2,
B3,
B4,
Y1,
Y2,
Y3,
Y4
);
input A1, A2, A3, A4, B1, B2, B3, B4;
output Y1, Y2, Y3, Y4;
and(highz1, strong0) #21 g1 (Y1, A1, B1);
and(highz1, strong0) #21 g2 (Y2, A2, B2);
and(highz1, strong0) #21 g3 (Y3, A3, B3);
and(highz1, strong0) #21 g4 (Y4, A4, B4);
endmodule
| 6.533436
|
module SN7415 (
A1,
A2,
A3,
B1,
B2,
B3,
C1,
C2,
C3,
Y1,
Y2,
Y3
);
input A1, A2, A3, B1, B2, B3, C1, C2, C3;
output Y1, Y2, Y3;
and(highz1, strong0) #40 g1 (Y1, A1, B1, C1);
and(highz1, strong0) #40 g2 (Y2, A2, B2, C2);
and(highz1, strong0) #40 g3 (Y3, A3, B3, C3);
endmodule
| 6.960009
|
module SN7402 (
A1,
A2,
A3,
A4,
B1,
B2,
B3,
B4,
Y1,
Y2,
Y3,
Y4
);
input A1, A2, A3, A4, B1, B2, B3, B4;
output Y1, Y2, Y3, Y4;
nor #12 g1 (Y1, A1, B1);
nor #12 g2 (Y2, A2, B2);
nor #12 g3 (Y3, A3, B3);
nor #12 g4 (Y4, A4, B4);
endmodule
| 7.099925
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? (~displacement) : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? '0 : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? '1 : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (~(sub ? (~B) : B)));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : '0);
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : '1);
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = ((!memory) ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (0 ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (1 ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module _80_74AC283_add (
A,
B,
Y
);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 4;
parameter B_WIDTH = 4;
parameter Y_WIDTH = 4;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire _TECHMAP_FAIL_ = Y_WIDTH <= 1;
localparam WIDTH = ((Y_WIDTH + 3) / 4) * 4;
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH (A_WIDTH),
.Y_WIDTH (Y_WIDTH)
) A_conv (
.A(A),
.Y(A_buf)
);
\$pos #(
.A_SIGNED(B_SIGNED),
.A_WIDTH (B_WIDTH),
.Y_WIDTH (Y_WIDTH)
) B_conv (
.A(B),
.Y(B_buf)
);
wire [WIDTH-1:0] AA = A_buf;
wire [WIDTH-1:0] BB = B_buf;
wire [WIDTH-1:0] YY;
wire [ WIDTH:0] C;
assign C[0] = 0;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 4) begin : slice
\74AC283_1x1ADD4 adder_i (
.A (AA[i+3:i]),
.B (BB[i+3:i]),
.CI(C[i]),
.S (YY[i+3:i]),
.CO(C[i+4]),
);
end
endgenerate
assign Y = YY[Y_WIDTH-1:0];
endmodule
| 7.565105
|
module _80_74AC283_sub (
A,
B,
Y
);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 4;
parameter B_WIDTH = 4;
parameter Y_WIDTH = 4;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire _TECHMAP_FAIL_ = Y_WIDTH <= 1;
localparam WIDTH = ((Y_WIDTH + 3) / 4) * 4;
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH (A_WIDTH),
.Y_WIDTH (Y_WIDTH)
) A_conv (
.A(A),
.Y(A_buf)
);
\$pos #(
.A_SIGNED(B_SIGNED),
.A_WIDTH (B_WIDTH),
.Y_WIDTH (Y_WIDTH)
) B_conv (
.A(B),
.Y(B_buf)
);
wire [WIDTH-1:0] AA = A_buf;
wire [WIDTH-1:0] BB = B_buf;
wire [WIDTH-1:0] YY;
wire [ WIDTH:0] C;
assign C[0] = 1;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 4) begin : slice
\74AC283_1x1ADD4 adder_i (
.A (AA[i+3:i]),
.B (~BB[i+3:i]),
.CI(C[i]),
.S (YY[i+3:i]),
.CO(C[i+4]),
);
end
endgenerate
assign Y = YY[Y_WIDTH-1:0];
endmodule
| 7.716298
|
module _80_74HC85_lt (
A,
B,
Y
);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire _TECHMAP_FAIL_ = A_WIDTH <= 3 && B_WIDTH <= 3;
localparam MAX_WIDTH = (A_WIDTH > B_WIDTH) ? A_WIDTH : B_WIDTH;
localparam WIDTH = ((MAX_WIDTH + 3) / 4) * 4;
wire [MAX_WIDTH-1:0] A_buf, B_buf;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH (A_WIDTH),
.Y_WIDTH (MAX_WIDTH)
) A_conv (
.A(A),
.Y(A_buf)
);
\$pos #(
.A_SIGNED(B_SIGNED),
.A_WIDTH (B_WIDTH),
.Y_WIDTH (MAX_WIDTH)
) B_conv (
.A(B),
.Y(B_buf)
);
wire [WIDTH-1:0] AA = A_buf;
wire [WIDTH-1:0] BB = B_buf;
wire [ WIDTH:0] G;
wire [ WIDTH:0] E;
wire [ WIDTH:0] L;
assign G[0] = 0;
assign E[0] = 1;
assign L[0] = 0;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 4) begin : slice
\74HC85_1x1CMP4 cmp_i (
.A (AA[i+3:i]),
.B (BB[i+3:i]),
.Li(L[i]),
.Ei(E[i]),
.Gi(G[i]),
.Lo(L[i+4]),
.Eo(E[i+4]),
.Go(G[i+4])
);
end
endgenerate
assign Y = L[WIDTH];
endmodule
| 7.847335
|
module _80_74HC85_gt (
A,
B,
Y
);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire _TECHMAP_FAIL_ = A_WIDTH <= 3 && B_WIDTH <= 3;
localparam MAX_WIDTH = (A_WIDTH > B_WIDTH) ? A_WIDTH : B_WIDTH;
localparam WIDTH = ((MAX_WIDTH + 3) / 4) * 4;
wire [MAX_WIDTH-1:0] A_buf, B_buf;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH (A_WIDTH),
.Y_WIDTH (MAX_WIDTH)
) A_conv (
.A(A),
.Y(A_buf)
);
\$pos #(
.A_SIGNED(B_SIGNED),
.A_WIDTH (B_WIDTH),
.Y_WIDTH (MAX_WIDTH)
) B_conv (
.A(B),
.Y(B_buf)
);
wire [WIDTH-1:0] AA = A_buf;
wire [WIDTH-1:0] BB = B_buf;
wire [ WIDTH:0] G;
wire [ WIDTH:0] E;
wire [ WIDTH:0] L;
assign G[0] = 0;
assign E[0] = 1;
assign L[0] = 0;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 4) begin : slice
\74HC85_1x1CMP4 cmp_i (
.A (AA[i+3:i]),
.B (BB[i+3:i]),
.Li(L[i]),
.Ei(E[i]),
.Gi(G[i]),
.Lo(L[i+4]),
.Eo(E[i+4]),
.Go(G[i+4])
);
end
endgenerate
assign Y = G[WIDTH];
endmodule
| 7.90402
|
module _80_74HC85_le (
A,
B,
Y
);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire _TECHMAP_FAIL_ = A_WIDTH <= 3 && B_WIDTH <= 3;
localparam MAX_WIDTH = (A_WIDTH > B_WIDTH) ? A_WIDTH : B_WIDTH;
localparam WIDTH = ((MAX_WIDTH + 3) / 4) * 4;
wire [MAX_WIDTH-1:0] A_buf, B_buf;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH (A_WIDTH),
.Y_WIDTH (MAX_WIDTH)
) A_conv (
.A(A),
.Y(A_buf)
);
\$pos #(
.A_SIGNED(B_SIGNED),
.A_WIDTH (B_WIDTH),
.Y_WIDTH (MAX_WIDTH)
) B_conv (
.A(B),
.Y(B_buf)
);
wire [WIDTH-1:0] AA = A_buf;
wire [WIDTH-1:0] BB = B_buf;
wire [ WIDTH:0] G;
wire [ WIDTH:0] E;
wire [ WIDTH:0] L;
assign G[0] = 0;
assign E[0] = 1;
assign L[0] = 0;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 4) begin : slice
\74HC85_1x1CMP4 cmp_i (
.A (AA[i+3:i]),
.B (BB[i+3:i]),
.Li(L[i]),
.Ei(E[i]),
.Gi(G[i]),
.Lo(L[i+4]),
.Eo(E[i+4]),
.Go(G[i+4])
);
end
endgenerate
assign Y = !G[WIDTH];
endmodule
| 7.831979
|
module _80_74HC85_ge (
A,
B,
Y
);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire _TECHMAP_FAIL_ = A_WIDTH <= 3 && B_WIDTH <= 3;
localparam MAX_WIDTH = (A_WIDTH > B_WIDTH) ? A_WIDTH : B_WIDTH;
localparam WIDTH = ((MAX_WIDTH + 3) / 4) * 4;
wire [MAX_WIDTH-1:0] A_buf, B_buf;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH (A_WIDTH),
.Y_WIDTH (MAX_WIDTH)
) A_conv (
.A(A),
.Y(A_buf)
);
\$pos #(
.A_SIGNED(B_SIGNED),
.A_WIDTH (B_WIDTH),
.Y_WIDTH (MAX_WIDTH)
) B_conv (
.A(B),
.Y(B_buf)
);
wire [WIDTH-1:0] AA = A_buf;
wire [WIDTH-1:0] BB = B_buf;
wire [ WIDTH:0] G;
wire [ WIDTH:0] E;
wire [ WIDTH:0] L;
assign G[0] = 0;
assign E[0] = 1;
assign L[0] = 0;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 4) begin : slice
\74HC85_1x1CMP4 cmp_i (
.A (AA[i+3:i]),
.B (BB[i+3:i]),
.Li(L[i]),
.Ei(E[i]),
.Gi(G[i]),
.Lo(L[i+4]),
.Eo(E[i+4]),
.Go(G[i+4])
);
end
endgenerate
assign Y = !L[WIDTH];
endmodule
| 7.79516
|
module _80_74AC161_counter (
rst,
clk,
preset,
counter
);
parameter _TECHMAP_CELLTYPE_ = "";
parameter WIDTH = (_TECHMAP_CELLTYPE_ == "_74xx_counter8") ? 8 : (_TECHMAP_CELLTYPE_ == "_74xx_counter16" ? 16 : 32) ;
input rst;
input clk;
input [WIDTH-1:0] preset;
output reg [WIDTH-1:0] counter;
wire [WIDTH:0] C;
assign C[0] = 1'b1;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 4) begin : slice
\74AC161_1x1COUNT4 counter_i (
.A(preset[i+3:i]),
.Q(counter[i+3:i]),
.CLK(clk),
.ENT(C[i]),
.RCO(C[i+4]),
.LOAD(rst)
);
end
endgenerate
endmodule
| 7.27201
|
module _80_74HC688_eq (
A,
B,
Y
);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
parameter _TECHMAP_CONSTMSK_A_ = 0;
parameter _TECHMAP_CONSTVAL_A_ = 0;
parameter _TECHMAP_CONSTMSK_B_ = 0;
parameter _TECHMAP_CONSTVAL_B_ = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire _TECHMAP_FAIL_ = (A_WIDTH <= 6 && B_WIDTH <= 6) || &_TECHMAP_CONSTMSK_A_ || &_TECHMAP_CONSTMSK_B_;
localparam WIDTH = ((Y_WIDTH + 7) / 8) * 8;
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH (A_WIDTH),
.Y_WIDTH (Y_WIDTH)
) A_conv (
.A(A),
.Y(A_buf)
);
\$pos #(
.A_SIGNED(B_SIGNED),
.A_WIDTH (B_WIDTH),
.Y_WIDTH (Y_WIDTH)
) B_conv (
.A(B),
.Y(B_buf)
);
wire [WIDTH-1:0] AA = A_buf;
wire [WIDTH-1:0] BB = B_buf;
wire [WIDTH-1:0] YY;
wire [ WIDTH:0] C;
assign C[0] = 0;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 8) begin : slice
\74HC688_1x1EQ8 eq_i (
.A(AA[i+7:i]),
.B(BB[i+7:i]),
.E(C[i]),
.Q(C[i+8])
);
end
endgenerate
assign Y = !C[WIDTH];
endmodule
| 7.267959
|
module _80_74HC688_ne (
A,
B,
Y
);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
parameter _TECHMAP_CONSTMSK_A_ = 0;
parameter _TECHMAP_CONSTVAL_A_ = 0;
parameter _TECHMAP_CONSTMSK_B_ = 0;
parameter _TECHMAP_CONSTVAL_B_ = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire _TECHMAP_FAIL_ = (A_WIDTH <= 6 && B_WIDTH <= 6) || &_TECHMAP_CONSTMSK_A_ || &_TECHMAP_CONSTMSK_B_;
localparam WIDTH = ((Y_WIDTH + 7) / 8) * 8;
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH (A_WIDTH),
.Y_WIDTH (Y_WIDTH)
) A_conv (
.A(A),
.Y(A_buf)
);
\$pos #(
.A_SIGNED(B_SIGNED),
.A_WIDTH (B_WIDTH),
.Y_WIDTH (Y_WIDTH)
) B_conv (
.A(B),
.Y(B_buf)
);
wire [WIDTH-1:0] AA = A_buf;
wire [WIDTH-1:0] BB = B_buf;
wire [WIDTH-1:0] YY;
wire [ WIDTH:0] C;
assign C[0] = 0;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 8) begin : slice
\74HC688_1x1EQ8 eq_i (
.A(AA[i+7:i]),
.B(BB[i+7:i]),
.E(C[i]),
.Q(C[i+8])
);
end
endgenerate
assign Y = C[WIDTH];
endmodule
| 7.502298
|
module _74xx_counter8 (
input rst,
input clk,
input [7:0] preset,
output reg [7:0] counter
);
always @(posedge clk) begin
if (!rst) begin
counter <= preset;
end else begin
counter <= counter + 1'b1;
end
end
endmodule
| 7.761956
|
module _74xx_counter16 (
input rst,
input clk,
input [15:0] preset,
output reg [15:0] counter
);
always @(posedge clk) begin
if (!rst) begin
counter <= preset;
end else begin
counter <= counter + 1'b1;
end
end
endmodule
| 7.761956
|
module _74xx_counter32 (
input rst,
input clk,
input [32:0] preset,
output reg [31:0] counter
);
always @(posedge clk) begin
if (!rst) begin
counter <= preset;
end else begin
counter <= counter + 1'b1;
end
end
endmodule
| 7.761956
|
module \74HC85_1x1CMP4 (
A,
B,
Li,
Ei,
Gi,
Lo,
Eo,
Go
);
input [3:0] A;
input [3:0] B;
input Li, Ei, Gi;
output Lo, Eo, Go;
assign Lo = (A < B) || (A == B && !Gi && !Ei);
assign Go = (A > B) || (A == B && !Li && !Ei);
assign Eo = (A == B) && Ei;
endmodule
| 7.450051
|
module \74AC161_1x1COUNT4 (
A,
Q,
RCO,
ENT,
CLK,
LOAD
);
input [3:0] A;
input CLK;
input ENT;
input LOAD;
output reg [3:0] Q;
output RCO;
assign RCO = Q == 4'b1111;
always @(posedge CLK) begin
if (!LOAD) begin
Q <= A;
end else if (ENT) begin
Q <= Q + 1'b1;
end
end
endmodule
| 7.267505
|
module top_module (
input a,
input b,
input c,
input d,
output out
);
assign out = a | (c & ~b);
endmodule
| 7.203305
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = (~((A + ALU_op2) + sub));
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = '0;
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = '1;
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module top_module (
input a,
input b,
input c,
input d,
output out
);
assign out = a ^ b ^ c ^ d;
endmodule
| 7.203305
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = (((-A) + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = (('0 + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = (('1 + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + (-ALU_op2)) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + '0) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + '1) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A - ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A * ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A / ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A % ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module top_module (
input a,
input b,
input c,
input d,
output out_sop,
output out_pos
);
assign out_sop = (c & d) | (~a & ~b & c);
assign out_pos = (c) & (~a | b) & (d | ~b);
endmodule
| 7.203305
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((-(A + ALU_op2)) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ('0 + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ('1 + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + (-sub));
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + '0);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + '1);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) - sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) * sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) / sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) % sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module top_module (
input [4:1] x,
output f
);
assign f = (x[3] & ~x[1]) | (~x[3] & x[1] & x[2]);
endmodule
| 7.203305
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge (!clk))
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge 0)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge 1)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module top_module (
input [4:1] x,
output f
);
assign f = (x[3] & ~x[1]) | (x[2] & x[3] & x[4]) | (~x[4] & ~x[2]);
endmodule
| 7.203305
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = (~0);
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = '0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = '1;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module RAM (
//input:
clk,
wen,
din,
addr,
dout
);
parameter DWIDTH = 16; //数据宽度,请根据实际情况修改
parameter AWIDTH = 4; //地址宽度,请根据实际情况修改
input clk;
input wen;
input [DWIDTH -1:0] din;
input [AWIDTH -1:0] addr;
output [DWIDTH -1:0] dout;
reg [DWIDTH-1:0] RAM[AWIDTH ** 2 - 1:0];
integer RAM_index;
initial begin
for (RAM_index = 0; RAM_index < 16; RAM_index = RAM_index + 1) begin
RAM[RAM_index] <= RAM_index + 1;
end
end
always @(posedge clk) begin
if (wen) RAM[addr] <= din;
end
assign dout = RAM[addr];
endmodule
| 8.249395
|
module top (
input clk,
output [7:0] pmod
);
// Wiring external pins.
reg [6:0] seg_pins_n;
reg digit_sel;
assign pmod[6:0] = seg_pins_n;
assign pmod[7] = digit_sel;
// counter increments at clk = 8 MHz.
reg [29:0] counter;
wire [ 3:0] ones = counter[20+:4];
wire [ 3:0] tens = counter[24+:4];
wire [ 2:0] display_state = counter[2+:3];
reg [ 6:0] ones_segments;
reg [ 6:0] tens_segments;
digit_to_segments ones2segs (
clk,
ones,
ones_segments
);
digit_to_segments tens2segs (
clk,
tens,
tens_segments
);
always @(posedge clk) begin
counter <= counter + 1;
// Switch seg_pins_n off during digit_sel transitions
// to prevent flicker. Each digit has 25% duty cycle.
case (display_state)
0, 1: seg_pins_n <= ~ones_segments;
2: seg_pins_n <= ~0;
3: digit_sel <= 0;
4, 5: seg_pins_n <= ~tens_segments;
6: seg_pins_n <= ~0;
7: digit_sel <= 1;
endcase
end
endmodule
| 7.233807
|
module digit_to_segments (
input clk,
input [3:0] digit,
output reg [6:0] segments
);
always @(posedge clk)
case (digit)
0: segments <= 7'b0111111;
1: segments <= 7'b0000110;
2: segments <= 7'b1011011;
3: segments <= 7'b1001111;
4: segments <= 7'b1100110;
5: segments <= 7'b1101101;
6: segments <= 7'b1111101;
7: segments <= 7'b0000111;
8: segments <= 7'b1111111;
9: segments <= 7'b1101111;
4'hA: segments <= 7'b1110111;
4'hB: segments <= 7'b1111100;
4'hC: segments <= 7'b0111001;
4'hD: segments <= 7'b1011110;
4'hE: segments <= 7'b1111001;
4'hF: segments <= 7'b1110001;
endcase
endmodule
| 6.980582
|
module m_7segled (
w_in,
r_led
);
input wire [3:0] w_in;
output reg [6:0] r_led;
always @(*) begin
case (w_in)
4'd0: r_led <= 7'b1111110;
4'd1: r_led <= 7'b0110000;
4'd2: r_led <= 7'b1101101;
4'd3: r_led <= 7'b1111001;
4'd4: r_led <= 7'b0110011;
4'd5: r_led <= 7'b1011011;
4'd6: r_led <= 7'b1011111;
4'd7: r_led <= 7'b1110000;
4'd8: r_led <= 7'b1111111;
4'd9: r_led <= 7'b1111011;
default: r_led <= 7'b0000000;
endcase
end
endmodule
| 7.193795
|
module m_7segcon (
w_clk,
w_din,
r_sg,
r_an
);
input wire w_clk;
input wire [31:0] w_din;
output reg [6:0] r_sg; // cathode segments
output reg [7:0] r_an; // common anode
reg [31:0] r_val = 0;
reg [31:0] r_cnt = 0;
reg [ 3:0] r_in = 0;
reg [ 2:0] r_digit = 0;
always @(posedge w_clk) r_val <= w_din;
always @(posedge w_clk) begin
r_cnt <= (r_cnt >= (`DELAY7SEG - 1)) ? 0 : r_cnt + 1;
if (r_cnt == 0) begin
r_digit <= r_digit + 1;
if (r_digit == 0) begin
r_an <= 8'b11111110;
r_in <= r_val % 10;
end else if (r_digit == 1) begin
r_an <= 8'b11111101;
r_in <= (r_val / 10) % 10;
end else if (r_digit == 2) begin
r_an <= 8'b11111011;
r_in <= (r_val / 100) % 10;
end else if (r_digit == 3) begin
r_an <= 8'b11110111;
r_in <= (r_val / 1000) % 10;
end else if (r_digit == 4) begin
r_an <= 8'b11101111;
r_in <= (r_val / 10000) % 10;
end else if (r_digit == 5) begin
r_an <= 8'b11011111;
r_in <= (r_val / 100000) % 10;
end else if (r_digit == 6) begin
r_an <= 8'b10111111;
r_in <= (r_val / 1000000) % 10;
end else begin
r_an <= 8'b01111111;
r_in <= (r_val / 10000000) % 10;
end
end
end
wire [6:0] w_segments;
m_7segled m_7segled (
r_in,
w_segments
);
always @(posedge w_clk) r_sg <= ~w_segments;
endmodule
| 7.442382
|
module sevenSegConv (
num,
out1,
out2
);
input [31:0] num;
output [6:0] out1, out2;
wire [31:0] numLower = num / 10;
wire [31:0] numUpper = num % 10;
assign out1 = (numLower == 32'd0) ? 7'b1000000:
(numLower == 32'd1) ? 7'b1001111:
(numLower == 32'd2) ? 7'b0100100:
(numLower == 32'd3) ? 7'b0110000:
(numLower == 32'd4) ? 7'b0011001:
(numLower == 32'd5) ? 7'b0010010:
(numLower == 32'd6) ? 7'b0000010:
(numLower == 32'd7) ? 7'b1111000:
(numLower == 32'd8) ? 7'b0000000:
(numLower == 32'd9) ? 7'b0010000: 7'b1111111;
assign out2 = (numUpper == 32'd0) ? 7'b1000000:
(numUpper == 32'd1) ? 7'b1001111:
(numUpper == 32'd2) ? 7'b0100100:
(numUpper == 32'd3) ? 7'b0110000:
(numUpper == 32'd4) ? 7'b0011001:
(numUpper == 32'd5) ? 7'b0010010:
(numUpper == 32'd6) ? 7'b0000010:
(numUpper == 32'd7) ? 7'b1111000:
(numUpper == 32'd8) ? 7'b0000000:
(numUpper == 32'd9) ? 7'b0010000: 7'b1111111;
endmodule
| 6.977727
|
module top (
input clk,
input RESET,
output LED0,
output LED1,
output LED2,
output LED3,
output LED4,
output LED5,
output LED6,
output LED7,
output A,
output B,
output C,
output D,
output E,
output F,
output G,
output DP,
output C0,
output C1,
output C2,
);
localparam CLKDIV = 21;
localparam REFCLK = 16;
reg [CLKDIV:0] clkdiv;
reg [REFCLK:0] refclk;
reg [1:0] state;
reg [2:0] com_driv;
reg [11:0] counter;
reg dot;
reg [7:0] sevenseg;
wire [7:0] bcdwire1;
wire [7:0] bcdwire2;
wire [7:0] bcdwire3;
bcdto7seg dec1 (counter[3:0], bcdwire1, dot, clk);
bcdto7seg dec2 (counter[7:4], bcdwire2, dot, clk);
bcdto7seg dec3 (counter[11:8], bcdwire3, dot, clk);
always@(posedge clk)
begin
clkdiv <= clkdiv + 1;
refclk <= refclk + 1;
if (RESET == 0)
begin
counter <= 0;
clkdiv <= 0;
end
if (clkdiv[CLKDIV])
begin
clkdiv <= 0;
counter <= counter + 1;
dot <= 0;
end
if (refclk[REFCLK])
begin
refclk <= 0;
state <= state + 1;
if(state == 3)
state <= 0;
case (state)
0:
begin
com_driv <= 3'b100;
sevenseg <= bcdwire1;
end
1:
begin
com_driv <= 3'b010;
sevenseg <= bcdwire2;
end
2:
begin
com_driv <= 3'b001;
sevenseg <= bcdwire3;
end
endcase // case (state)
end // if (refclk[REFCLK])
end // always@ (posedge clk)
assign {LED0, LED1, LED2, LED3, LED4, LED5, LED6, LED7} = sevenseg;
assign {A, B, C, D, E, F, G, DP} = ~sevenseg;
assign {C2, C1, C0} = com_driv;
endmodule
| 6.557014
|
module bcdto7seg (
bcd,
sevenseg,
dot
);
input [3:0] bcd;
input dot;
output reg [7:0] sevenseg;
always @(bcd, dot) begin
case (bcd)
4'h0: sevenseg <= 8'b11111100 | dot;
4'h1: sevenseg <= 8'b01100000 | dot;
4'h2: sevenseg <= 8'b11011010 | dot;
4'h3: sevenseg <= 8'b11110010 | dot;
4'h4: sevenseg <= 8'b01100110 | dot;
4'h5: sevenseg <= 8'b10110110 | dot;
4'h6: sevenseg <= 8'b00111110 | dot;
4'h7: sevenseg <= 8'b11100000 | dot;
4'h8: sevenseg <= 8'b11111110 | dot;
4'h9: sevenseg <= 8'b11100110 | dot;
4'ha: sevenseg <= 8'b11111010 | dot;
4'hb: sevenseg <= 8'b00111110 | dot;
4'hc: sevenseg <= 8'b00011010 | dot;
4'hd: sevenseg <= 8'b01111010 | dot;
4'he: sevenseg <= 8'b10011010 | dot;
4'hf: sevenseg <= 8'b10001010 | dot;
endcase // case (bcd)
end // always @ (posedge set)
endmodule
| 7.041565
|
module DFF (
clk,
rst_n,
Q,
D
);
parameter width = 4;
parameter init = 0;
input clk, rst_n;
input [width-1:0] D;
output reg [width-1:0] Q;
always @(posedge clk or posedge rst_n) begin
if (rst_n) begin
Q <= init;
end else begin
Q <= D;
end
end
endmodule
| 8.191977
|
module Seven_Segment_display_decoder (
BCD,
DISPLAY
);
input [3:0] BCD;
output reg [6:0] DISPLAY;
always @* begin
case (BCD)
4'd0: DISPLAY = 7'b1000000;
4'd1: DISPLAY = 7'b1111001;
4'd2: DISPLAY = 7'b0100100;
4'd3: DISPLAY = 7'b0110000;
4'd4: DISPLAY = 7'b0011001;
4'd5: DISPLAY = 7'b0010010;
4'd6: DISPLAY = 7'b0000010;
4'd7: DISPLAY = 7'b1111000;
4'd8: DISPLAY = 7'b0000000;
4'd9: DISPLAY = 7'b0010000;
default: DISPLAY = 7'b1111111;
endcase
end
endmodule
| 7.463488
|
module Seven_Segment_display (
clk,
reset,
BCD,
DIGIT,
DISPLAY_OUT
);
input clk;
input reset;
input [15:0] BCD;
output reg [3:0] DIGIT;
output reg [6:0] DISPLAY_OUT;
wire [6:0] DISPLAY[3:0];
/* Seven Segment Display */
Seven_Segment_display_decoder SSDD0 (
BCD[3:0],
DISPLAY[0]
);
Seven_Segment_display_decoder SSDD1 (
BCD[7:4],
DISPLAY[1]
);
Seven_Segment_display_decoder SSDD2 (
BCD[11:8],
DISPLAY[2]
);
Seven_Segment_display_decoder SSDD3 (
BCD[15:12],
DISPLAY[3]
);
wire [2:0] curr_count;
reg [2:0] next_count;
DFF #(3, 3'd0) SEG7DFF (
clk,
reset,
curr_count,
next_count
);
always @(*) begin
case (curr_count)
2'b00: begin
next_count = 2'b01;
DIGIT = 4'b1110;
DISPLAY_OUT = DISPLAY[0];
end
2'b01: begin
next_count = 2'b10;
DIGIT = 4'b1101;
DISPLAY_OUT = DISPLAY[1];
end
2'b10: begin
next_count = 2'b11;
DIGIT = 4'b1011;
DISPLAY_OUT = DISPLAY[2];
end
2'b11: begin
next_count = 2'b00;
DIGIT = 4'b0111;
DISPLAY_OUT = DISPLAY[3];
end
endcase
end
endmodule
| 7.463488
|
module bin_7segment_tb ();
reg clk = 1'b0;
reg [15:0] sw = 'b0;
wire [6:0] seg;
wire [3:0] an;
wire dp;
always #1 clk <= ~clk;
always #40 sw <= sw + 1;
initial begin
#1000;
$finish();
end
initial begin
$display(" ");
$display("----------------------------------------------");
$display(" Starting Testbench...");
$dumpfile("wave.vcd");
$dumpvars(0);
$display("----------------------------------------------");
$display(" ");
end
bin_7segment test_unit1 (
.clk(clk),
.sw (sw),
.seg(seg),
.an (an),
.dp (dp)
);
endmodule
| 7.046124
|
module top (
input CLK,
output P1A1,
output P1A2,
output P1A3,
output P1A4,
output P1A7,
output P1A8,
output P1A9,
output P1A10
);
// Wiring external pins.
reg [6:0] seg_pins_n;
reg digit_sel;
assign {P1A9, P1A8, P1A7, P1A4, P1A3, P1A2, P1A1} = seg_pins_n;
assign P1A10 = digit_sel;
// counter increments at CLK = 12 MHz.
// ones digit increments at ~6Hz.
// display refreshes at 375 KHz.
reg [29:0] counter;
wire [ 3:0] ones = counter[21+:4];
wire [ 3:0] tens = counter[25+:4];
wire [ 2:0] display_state = counter[2+:3];
reg [ 6:0] ones_segments;
reg [ 6:0] tens_segments;
digit_to_segments ones2segs (
CLK,
ones,
ones_segments
);
digit_to_segments tens2segs (
CLK,
tens,
tens_segments
);
always @(posedge CLK) begin
counter <= counter + 1;
// Switch seg_pins_n off during digit_sel transitions
// to prevent flicker. Each digit has 25% duty cycle.
case (display_state)
0, 1: seg_pins_n <= ~ones_segments;
2: seg_pins_n <= ~0;
3: digit_sel <= 0;
4, 5: seg_pins_n <= ~tens_segments;
6: seg_pins_n <= ~0;
7: digit_sel <= 1;
endcase
end
endmodule
| 7.233807
|
module digit_to_segments (
input clk,
input [3:0] digit,
output reg [6:0] segments
);
always @(posedge clk)
case (digit)
0: segments <= 7'b0111111;
1: segments <= 7'b0000110;
2: segments <= 7'b1011011;
3: segments <= 7'b1001111;
4: segments <= 7'b1100110;
5: segments <= 7'b1101101;
6: segments <= 7'b1111101;
7: segments <= 7'b0000111;
8: segments <= 7'b1111111;
9: segments <= 7'b1101111;
4'hA: segments <= 7'b1110111;
4'hB: segments <= 7'b1111100;
4'hC: segments <= 7'b0111001;
4'hD: segments <= 7'b1011110;
4'hE: segments <= 7'b1111001;
4'hF: segments <= 7'b1110001;
endcase
endmodule
| 6.980582
|
module seg_dec_tb;
reg [3:0] n;
wire [6:0] ag;
seg_dec seg_dec (
.num(n),
.a_g(ag)
);
initial begin
n <= 4'b0000;
#120 $stop;
end
always #10 n <= n + 1;
initial begin
$dumpfile("seg_dec_tb.vcd");
$dumpvars;
end
endmodule
| 6.75538
|
module seven_seg_Dev_IO (
input clk,
input rst,
input GPIOe0000000_we,
input [2:0] Test,
input [31:0] disp_cpudata,
input [31:0] Test_data0,
input [31:0] Test_data1,
input [31:0] Test_data2,
input [31:0] Test_data3,
input [31:0] Test_data4,
input [31:0] Test_data5,
input [31:0] Test_data6,
output [31:0] disp_num
);
endmodule
| 6.696936
|
module seven_seg_display (
input clk,
output reg [2:0] ca,
);
initial begin
ca = 3'b110;
end
reg [17:0] count;
always @(posedge clk) begin
count <= count + 1;
if(count[17]) begin
count <= 0;
ca <= {ca[1:0], ca[2]};
end
end
endmodule
| 6.903527
|
module SevenSegLed (
input clk,
input [31:0] data,
output reg LED_DATA,
LED_SCK,
LED_RCK
);
reg [ 3:0] shift;
reg [ 2:0] digit;
wire [ 3:0] d = data >> digit * 4;
wire [ 7:0] c = led_code(d);
wire [ 7:0] a = 8'h80 >> digit;
reg [15:0] out;
reg [ 1:0] state;
localparam ST_DATA = 0;
localparam ST_RCK = 2;
localparam ST_SCK = 3;
always @(posedge clk) begin
case (state)
ST_DATA: begin
LED_DATA <= out[shift];
LED_SCK <= 1'b1;
LED_RCK <= 1'b0;
state <= ST_SCK;
end
ST_SCK: begin
LED_SCK <= 1'b0;
if (shift == 0) begin
shift <= 15;
state <= ST_RCK;
end else begin
shift <= shift - 1;
state <= ST_DATA;
end
end
ST_RCK: begin
LED_RCK <= 1'b1;
digit <= digit + 1;
out <= {a, ~c};
state <= ST_DATA;
end
endcase
end
function [7:0] led_code;
input [3:0] in;
case (in)
4'h0: led_code = 8'b00111111;
4'h1: led_code = 8'b00000110;
4'h2: led_code = 8'b01011011;
4'h3: led_code = 8'b01001111;
4'h4: led_code = 8'b01100110;
4'h5: led_code = 8'b01101101;
4'h6: led_code = 8'b01111101;
4'h7: led_code = 8'b00000111;
4'h8: led_code = 8'b01111111;
4'h9: led_code = 8'b01101111;
4'ha: led_code = 8'b01110111;
4'hb: led_code = 8'b00011111;
4'hc: led_code = 8'b00111001;
4'hd: led_code = 8'b01011110;
4'he: led_code = 8'b01111001;
4'hf: led_code = 8'b01110001;
endcase
endfunction
endmodule
| 6.932944
|
module sseg_tb ();
reg [3:0] in;
wire [6:0] out;
reg oe;
sseg DUT (
.in(in),
.out_q(out),
.oe(oe)
);
initial begin
$dumpfile("sseg.vcd");
$dumpvars(0, sseg_tb);
in = 0;
oe = 1;
#100 $finish;
end
always #5 in = in + 1;
endmodule
| 6.67828
|
module seven_seg_manager_4digit (
input clk,
input reset,
input [6:0] d7s_0,
d7s_1,
d7s_2,
d7s_3,
output reg [3:0] anodo,
output reg [6:0] segments
);
//Lo ideal sera hacer un modulo _delay_ms(cuantos ms dura el delay)
reg [2:0] selector = 2'd0;
wire clock;
clk_divider_7segment(
clk, reset, clock
);
always @(posedge clock) begin
case (selector)
2'd0: begin
anodo = 4'b0111;
segments = d7s_0;
end
2'd1: begin
anodo = 4'b1011;
segments = d7s_1;
end
2'd2: begin
anodo = 4'b1101;
segments = d7s_2;
end
2'd3: begin
anodo = 4'b1110;
segments = d7s_3;
end
default: begin
anodo = 4'b0000;
segments = 7'b1111111;
end
endcase
selector <= selector + 1;
end
/*nicamente recibo los numeros de 7 bits
que representan los digitos en 7segmentos
y los hago alternar entre ellos para que
aparente que estan encendidos al mismo tiempo*/
endmodule
| 7.171677
|
module Reg8_1 (
out,
in,
clk,
ctrl
);
input ctrl;
output [7:0] out;
input [7:0] in;
reg [7:0] Regs;
input clk;
assign out[0] = Regs[0];
assign out[1] = Regs[1];
assign out[2] = Regs[2];
assign out[3] = Regs[3];
assign out[4] = Regs[4];
assign out[5] = Regs[5];
assign out[6] = Regs[6];
assign out[7] = Regs[7];
always @(posedge clk) begin
if (!ctrl) begin
Regs[0] <= in[0];
Regs[1] <= in[1];
Regs[2] <= in[2];
Regs[3] <= in[3];
Regs[4] <= in[4];
Regs[5] <= in[5];
Regs[6] <= in[6];
Regs[7] <= in[7];
end
end
endmodule
| 6.75854
|
module Reg8_2 (
out,
in,
clk
);
output [7:0] out;
input [7:0] in;
reg [7:0] Regs;
input clk;
assign out[0] = Regs[0];
assign out[1] = Regs[1];
assign out[2] = Regs[2];
assign out[3] = Regs[3];
assign out[4] = Regs[4];
assign out[5] = Regs[5];
assign out[6] = Regs[6];
assign out[7] = Regs[7];
always @(posedge clk) begin
Regs[0] <= in[0];
Regs[1] <= in[1];
Regs[2] <= in[2];
Regs[3] <= in[3];
Regs[4] <= in[4];
Regs[5] <= in[5];
Regs[6] <= in[6];
Regs[7] <= in[7];
end
endmodule
| 6.827413
|
module testmul;
reg [ 2:0] Shift_amt;
reg [ 7:0] in;
wire [15:0] out;
Multiplier m1 (
out,
in,
Shift_amt
);
initial begin
Shift_amt = 3'b011;
in = 8'b11101011;
end
endmodule
| 6.716264
|
module testcomp;
reg [15:0] in;
reg sign;
wire [15:0] out;
Complement cmp (
out,
in,
sign
);
initial begin
// in=16'b0110101111010011;
// sign = 1'b1;
// #10 $display ("out: %b",out);
// sign = 1'b0;
// #10 $display ("out: %b",out);
// #10 $finish;
end
endmodule
| 6.940555
|
module Mux8 (
out,
in1,
in2,
sel
);
input [7:0] in1, in2;
input sel;
output [7:0] out;
not n1 (selNot, sel);
semimux m1 (
out[0],
in1[0],
in2[0],
sel,
selNot
);
semimux m2 (
out[1],
in1[1],
in2[1],
sel,
selNot
);
semimux m3 (
out[2],
in1[2],
in2[2],
sel,
selNot
);
semimux m4 (
out[3],
in1[3],
in2[3],
sel,
selNot
);
semimux m5 (
out[4],
in1[4],
in2[4],
sel,
selNot
);
semimux m6 (
out[5],
in1[5],
in2[5],
sel,
selNot
);
semimux m7 (
out[6],
in1[6],
in2[6],
sel,
selNot
);
semimux m8 (
out[7],
in1[7],
in2[7],
sel,
selNot
);
endmodule
| 6.721134
|
module testadder;
// reg [7:0] in1,in2;
// reg sign, ctrl;
// wire [7:0] out;
// Clock c(clk);
// SerialAdder Add(out,clk,in1,in2,sign,ctrl);
// initial begin
// ctrl=1'b1;
// sign=1'b1;
// in1=8'b00101101;
// in2=8'b11101111;
// #10 ctrl=1'b0;in1=8'b00000000;in2=8'b00000000;
// #10 in1=8'bxxxxxxxx;
// #20 $finish;
// end
// always @(posedge clk) $display("out: %b",out);
// endmodule
| 6.668018
|
module mux (
out,
a,
b,
sel
);
output out;
input a, b, sel;
not not1 (selNot, sel);
semimux m1 (
out,
a,
b,
sel,
selNot
);
endmodule
| 7.812393
|
module PE_Conv_test;
reg [7:0] xOrW, yIn;
reg [2:0] ctrl;
wire [7:0] yOut, xOut;
PE_Conv PE (
yOut,
xOut,
xOrW,
yIn,
clk,
ctrl
);
Clock c (clk);
reg [3:0] W;
reg [15:0] X1, X2, X3;
reg [15:0] Y1, Y2, Y3;
initial begin
W = 4'b1011;
X1 = 8'b10110101;
X2 = 8'b11110000;
X3 = 8'b11001100;
Y1 = 16'b0101110111001101;
Y2 = 16'b1010101010101010;
Y3 = 16'b1100110011001100;
ctrl = 3'b001;
yIn = 1'b0;
xOrW[3:0] = W;
xOrW[7:4] = 4'b0000;
//#10 $display("inserting X1");ctrl=3'b010;xOrW=X1;yIn=Y1[7:0];
#10 ctrl = 3'b100;
yIn = Y1[15:8];
//#10 $display("inserting X2");ctrl=3'b010;xOrW=X2;yIn=Y2[7:0];
#10 ctrl = 3'b100;
yIn = Y2[15:8];
//#10 $display("inserting X3");ctrl=3'b010;xOrW=X3;yIn=Y3[7:0];
#10 ctrl = 3'b100;
yIn = Y3[15:8];
//#10 $display("inserting X4");ctrl=3'b010;xOrW=X1;yIn=Y1[7:0];
#10 ctrl = 3'b100;
yIn = Y1[15:8];
//#10 $display("inserting X5");ctrl=3'b010;xOrW=X2;yIn=Y2[7:0];
#10 ctrl = 3'b100;
yIn = Y2[15:8];
//#10 $display("inserting X6");ctrl=3'b010;xOrW=X3;yIn=Y3[7:0];
#10 ctrl = 3'b100;
yIn = Y3[15:8];
//#10 $display("inserting don't care");ctrl=3'b010;xOrW=8'bxxxxxxxx;yIn=8'bxxxxxxxx;
//#400 $finish;
end
//always @(posedge clk) $display("X:%b ,Y:%b",xOut,yOut);
endmodule
| 6.683229
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if ((!rst)) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (0) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (1) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) begin
end
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module tb ();
reg a, b, c, d;
wire w, x, y, z;
bcd_ex3 dut (
a,
b,
c,
d,
w,
x,
y,
z
);
initial begin
$monitor("@time %3d : when input is %b %b %b %b output is %b %b %b %b", $time, a, b, c, d, w,
x, y, z);
a = 0;
b = 0;
c = 0;
d = 0;
#100;
a = 0;
b = 0;
c = 1;
d = 1;
#100;
a = 0;
b = 1;
c = 0;
d = 1;
end
endmodule
| 7.002324
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.