code
stringlengths
35
6.69k
score
float64
6.5
11.5
module Multiplexer_64Bit ( A, B, Select, Result ); input [63:0] A; input [63:0] B; input Select; output reg [63:0] Result; always @(A, B, Select) begin case (Select) 0: assign Result = A; 1: assign Result = B; endcase end endmodule
6.970876
module p_sbox ( input [32:1] msg, output [32:1] p_msg ); assign p_msg[1] = msg[16]; assign p_msg[2] = msg[7]; assign p_msg[3] = msg[20]; assign p_msg[4] = msg[21]; assign p_msg[5] = msg[29]; assign p_msg[6] = msg[12]; assign p_msg[7] = msg[28]; assign p_msg[8] = msg[17]; assign p_msg[9] = msg[1]; assign p_msg[10] = msg[15]; assign p_msg[11] = msg[23]; assign p_msg[12] = msg[26]; assign p_msg[13] = msg[5]; assign p_msg[14] = msg[18]; assign p_msg[15] = msg[31]; assign p_msg[16] = msg[10]; assign p_msg[17] = msg[2]; assign p_msg[18] = msg[8]; assign p_msg[19] = msg[24]; assign p_msg[20] = msg[14]; assign p_msg[21] = msg[32]; assign p_msg[22] = msg[27]; assign p_msg[23] = msg[3]; assign p_msg[24] = msg[9]; assign p_msg[25] = msg[19]; assign p_msg[26] = msg[13]; assign p_msg[27] = msg[30]; assign p_msg[28] = msg[6]; assign p_msg[29] = msg[22]; assign p_msg[30] = msg[11]; assign p_msg[31] = msg[4]; assign p_msg[32] = msg[25]; endmodule
6.76519
module f ( input [32:1] msg_r, input [48:1] key, output [32:1] f_out ); wire [48:1] temp, emsg_r; wire [32:1] temp_s_box; wire [4:1] s_box1, s_box2, s_box3, s_box4, s_box5, s_box6, s_box7, s_box8; wire [5:0] B1, B2, B3, B4, B5, B6, B7, B8; e inst ( msg_r, emsg_r ); assign temp = key ^ emsg_r; assign B8 = temp[48:43]; assign B7 = temp[42:37]; assign B6 = temp[36:31]; assign B5 = temp[30:25]; assign B4 = temp[24:19]; assign B3 = temp[18:13]; assign B2 = temp[12:7]; assign B1 = temp[6:1]; s_box s1 ( B1, 4'd1, s_box1 ); s_box s2 ( B2, 4'd2, s_box2 ); s_box s3 ( B3, 4'd3, s_box3 ); s_box s4 ( B4, 4'd4, s_box4 ); s_box s5 ( B5, 4'd5, s_box5 ); s_box s6 ( B6, 4'd6, s_box6 ); s_box s7 ( B7, 4'd7, s_box7 ); s_box s8 ( B8, 4'd8, s_box8 ); assign temp_s_box = {s_box1, s_box2, s_box3, s_box4, s_box5, s_box6, s_box7, s_box8}; p_sbox obj ( temp_s_box, f_out ); initial begin #6 $display("e_msg_r = %b", emsg_r); $display("key = %b", key); $display("sbox_i = %b", temp); $display("sbox_o = %b", temp_s_box); $display("f_out = %b", f_out); end endmodule
6.572024
module gf2m #( parameter DIGITAL = 64, parameter DATA_WIDTH = 163 ) ( input wire rst, input wire clk, input wire start, input wire [DATA_WIDTH - 1 : 0] a, input wire [DATA_WIDTH - 1 : 0] g, input wire [DIGITAL - 1:0] b, output reg [DATA_WIDTH - 1 : 0] t_i_j, output reg done ); parameter ITERATION_NUMBER = DATA_WIDTH / DIGITAL; parameter IDLE = 1'b0; parameter CAL = 1'b1; reg state; reg [12:0] counter; wire [DATA_WIDTH - 1 : 0] wire_t_i_j; serial serial_8_bit ( .b(b), .a(a), .g(g), .t_i1_j1(t_i_j), .t_i_j(wire_t_i_j) ); always @(posedge clk or negedge rst) begin : proc_counter if (~rst) begin counter <= 0; end else begin case (state) IDLE: begin counter <= 6'd0; end CAL: begin if (counter < ITERATION_NUMBER) counter <= counter + 1; else counter <= 6'd0; end default: /* default */; endcase end end always @(posedge clk or negedge rst) begin : proc_t_i_j if (~rst) begin t_i_j <= 0; end else begin case (state) IDLE: t_i_j <= 0; CAL: t_i_j <= wire_t_i_j; default: t_i_j <= 0; endcase end end always @(posedge clk or negedge rst) begin : proc_done if (~rst) begin done <= 0; end else begin case (state) IDLE: done <= 0; CAL: begin if (counter < ITERATION_NUMBER) done <= 0; else done <= 1'b1; end default: done <= 0; endcase end end always @(posedge clk or negedge rst) begin : proc_state if (~rst) begin state <= IDLE; end else begin case (state) IDLE: begin : IDLE_STATE if (start) state <= CAL; else state <= state; end CAL: begin : CAL_STATE if (counter < ITERATION_NUMBER) state <= CAL; else state <= IDLE; end default: state <= IDLE; endcase end end endmodule
7.196913
module p_sbox ( input [1:32] msg, output [1:32] p_msg ); assign p_msg[1] = msg[16]; assign p_msg[2] = msg[7]; assign p_msg[3] = msg[20]; assign p_msg[4] = msg[21]; assign p_msg[5] = msg[29]; assign p_msg[6] = msg[12]; assign p_msg[7] = msg[28]; assign p_msg[8] = msg[17]; assign p_msg[9] = msg[1]; assign p_msg[10] = msg[15]; assign p_msg[11] = msg[23]; assign p_msg[12] = msg[26]; assign p_msg[13] = msg[5]; assign p_msg[14] = msg[18]; assign p_msg[15] = msg[31]; assign p_msg[16] = msg[10]; assign p_msg[17] = msg[2]; assign p_msg[18] = msg[8]; assign p_msg[19] = msg[24]; assign p_msg[20] = msg[14]; assign p_msg[21] = msg[32]; assign p_msg[22] = msg[27]; assign p_msg[23] = msg[3]; assign p_msg[24] = msg[9]; assign p_msg[25] = msg[19]; assign p_msg[26] = msg[13]; assign p_msg[27] = msg[30]; assign p_msg[28] = msg[6]; assign p_msg[29] = msg[22]; assign p_msg[30] = msg[11]; assign p_msg[31] = msg[4]; assign p_msg[32] = msg[25]; endmodule
6.76519
module f ( input [1:32] msg_r, input [1:48] key, output [1:32] f_out ); wire [1:48] temp, emsg_r; wire [1:32] temp_s_box; wire [4:1] s_box1, s_box2, s_box3, s_box4, s_box5, s_box6, s_box7, s_box8; wire [5:0] B1, B2, B3, B4, B5, B6, B7, B8; e inst ( msg_r, emsg_r ); assign temp = key ^ emsg_r; assign B8 = temp[43:48]; assign B7 = temp[37:42]; assign B6 = temp[31:36]; assign B5 = temp[25:30]; assign B4 = temp[19:24]; assign B3 = temp[13:18]; assign B2 = temp[7:12]; assign B1 = temp[1:6]; s_box s1 ( B1, 4'd1, s_box1 ); s_box s2 ( B2, 4'd2, s_box2 ); s_box s3 ( B3, 4'd3, s_box3 ); s_box s4 ( B4, 4'd4, s_box4 ); s_box s5 ( B5, 4'd5, s_box5 ); s_box s6 ( B6, 4'd6, s_box6 ); s_box s7 ( B7, 4'd7, s_box7 ); s_box s8 ( B8, 4'd8, s_box8 ); assign temp_s_box = {s_box1, s_box2, s_box3, s_box4, s_box5, s_box6, s_box7, s_box8}; p_sbox obj ( temp_s_box, f_out ); // initial begin // #6 // $display("e_msg_r = %b",emsg_r); // $display("key1 = %b",key); // $display("sbox_i = %b",temp); // $display("sbox_o = %b",temp_s_box); // $display("f_out = %b",f_out); // end endmodule
6.572024
module fpga_gf2m #( parameter DIGITAL = 64, parameter DATA_WIDTH = 163 ) ( input clk, // Clock input rst, // Asynchronous reset active low input wire start, input wire [DATA_WIDTH - 1 : 0] a, input wire [DATA_WIDTH - 1 : 0] g, input wire [BWIDTH - 1:0] b, output reg [DATA_WIDTH - 1 : 0] t_i_j, output reg done ); parameter ITERATION_NUMBER = DATA_WIDTH / DIGITAL; parameter BWIDTH = (ITERATION_NUMBER + 1) * DIGITAL; parameter IDLE = 2'b00; parameter CAL = 2'b01; parameter DONE = 2'b10; reg state; reg [12:0] counter; reg [DATA_WIDTH - 1 : 0] reg_a; reg [DATA_WIDTH - 1 : 0] reg_g; reg [BWIDTH - 1:0] reg_b; wire [DIGITAL - 1:0] b_in; wire [DATA_WIDTH - 1 : 0] out_t_i_j; wire wire_done; gf2m fpgainst ( .rst(rst), .clk(clk), .start(start), .a(reg_a), .g(reg_g), .b(b_in), .t_i_j(out_t_i_j), .done(wire_done) ); // done always @(posedge clk or negedge rst) begin : proc_done if (~rst) begin done <= 0; end else begin case (wire_done) 1'b0: done <= done; 1'b1: done <= 1'b1; default: done <= done; endcase end end always @(posedge clk or negedge rst) begin : proc_t_i_j if (~rst) begin t_i_j <= 0; end else begin case (wire_done) 1'b0: t_i_j <= t_i_j; 1'b1: t_i_j <= out_t_i_j; default: t_i_j <= t_i_j; endcase end end // counter always @(posedge clk or negedge rst) begin : proc_counter if (~rst) begin counter <= 0; end else begin case (state) IDLE: begin counter <= 12'd0; end CAL: begin if (counter < ITERATION_NUMBER) counter <= counter + 1; else counter <= 12'd0; end default: counter <= 12'd0; endcase end end // reg_b_in assign b_in = reg_b[(ITERATION_NUMBER+1)*DIGITAL-1 : (ITERATION_NUMBER)*DIGITAL]; // reg_a always @(posedge clk or negedge rst) begin : reg_a34 if (~rst) begin reg_a <= 0; end else begin case (state) IDLE: begin if (start) reg_a <= a; else reg_a <= 0; end default: reg_a <= reg_a; endcase end end // reg_b always @(posedge clk or negedge rst) begin : reg_b24 if (~rst) begin reg_b <= 0; end else begin case (state) IDLE: begin if (start) reg_b <= b; else reg_b <= 0; end CAL: begin reg_b = reg_b <<< DIGITAL; end default: reg_b <= reg_b; endcase end end // reg_g always @(posedge clk or negedge rst) begin : proc_reg_g32 if (~rst) begin reg_g <= 0; end else begin case (state) IDLE: begin if (start) reg_g <= g; else reg_g <= 0; end default: reg_g <= reg_g; endcase end end always @(posedge clk or negedge rst) begin : proc_state_machine if (~rst) begin state <= IDLE; end else begin case (state) IDLE: begin if (start) begin state <= CAL; end else begin state <= state; end end CAL: begin if (counter < ITERATION_NUMBER) state <= CAL; else state <= DONE; end DONE: begin state <= DONE; end default: state <= IDLE; endcase end end endmodule
6.91314
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? (~distance) : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? '0 : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? '1 : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : (~0))); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : '0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : '1)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + ((!btaken) ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (0 ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (1 ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module full_and ( input [63:0] a, b, output [63:0] o ); genvar i; for (i = 0; i < 64; i = i + 1) begin and (o[i], a[i], b[i]); end endmodule
7.417589
module full_xor ( input [63:0] a, b, output [63:0] o ); genvar i; for (i = 0; i < 64; i = i + 1) begin xor (o[i], a[i], b[i]); end endmodule
7.075206
module top_module ( input [1023:0] in, input [7:0] sel, output [3:0] out ); assign out = in[sel*4+3-:4]; endmodule
7.203305
module decadj_half_adder ( input [3:0] dec_in, output wire [3:0] dec_out, input carry_in, input dec_add, input dec_sub, input half ); wire [3:0] correction_factor; wire add_adj, sub_adj; assign add_adj = dec_add & carry_in; assign sub_adj = dec_sub & ~carry_in; assign correction_factor = {sub_adj, add_adj, add_adj | sub_adj, 1'b0}; assign dec_out = dec_in + correction_factor; endmodule
7.382223
module alu_adder ( input [7:0] add_in1, input [7:0] add_in2, input add_cin, input dec_add, output wire [7:0] add_out, output wire carry_out, output wire half_carry_out ); wire dec_carry_out; // unused alu_half_adder low ( add_in1[3:0], add_in2[3:0], add_cin, dec_add, add_out[3:0], half_carry_out, dec_half_carry_out, 1'b0 ); alu_half_adder high ( add_in1[7:4], add_in2[7:4], half_carry_out, dec_add, add_out[7:4], carry_out, dec_carry_out, 1'b1 ); endmodule
6.784883
module alu_unit ( input clk, input ready, input [7:0] a, input [7:0] b, output reg [7:0] alu_out, input c_in, input dec_add, input [3:0] op, output reg carry_out, output wire half_carry_out, output wire overflow_out, output reg alu_carry_out_last ); reg c; wire [7:0] add_out; reg [7:0] tmp; wire adder_carry_out; alu_adder add_u ( a, b, c_in, dec_add, add_out, adder_carry_out, half_carry_out ); assign overflow_out = a[7] == b[7] && a[7] != add_out[7]; always @(*) begin case (op) // synthesis full_case parallel_case `ALU_ORA: begin c = 0; tmp = a | b; end `ALU_AND: begin tmp = a & b; c = |tmp; // This is a bit of a hack, used for 65C02 branch bit tests. end `ALU_EOR: begin c = 0; tmp = a ^ b; end `ALU_ADC, `ALU_SBC: begin c = adder_carry_out; tmp = add_out; end `ALU_ROR: begin {tmp, c} = {c_in, a}; end //`ALU_TST: // begin // c = 0; // tmp = ~a & b; // end `ALU_PSA: // Passthrough, used when I just needed the ALU to hold onto something for a cycle. The real 6502 has an output hold register. begin c = 0; tmp = a; end endcase alu_out = tmp; carry_out = c; //$strobe("ALU a: %02x b: %02x c_in: %d -> %02x daa: %d flags vc: %d%d hc: %d",a,b,c_in,tmp,dec_add,overflow_out,carry_out,half_carry_out); end always @(posedge clk) begin if (ready) alu_carry_out_last <= carry_out; end endmodule
7.428704
module decoder3to8 ( input [2:0] index, output reg [7:0] outbits ); always @(*) begin case (index) 0: outbits = 8'b00000001; 1: outbits = 8'b00000010; 2: outbits = 8'b00000100; 3: outbits = 8'b00001000; 4: outbits = 8'b00010000; 5: outbits = 8'b00100000; 6: outbits = 8'b01000000; 7: outbits = 8'b10000000; endcase end endmodule
8.532605
module alua_mux ( input clk, input ready, input [2:0] alu_a, input [7:0] sb, input [7:0] ir_dec, output reg [7:0] alua ); reg [7:0] aluas; // ALU A input select always @(*) begin case (alu_a) // synthesis full_case parallel_case `ALU_A_0: aluas = 8'h00; `ALU_A_SB: aluas = sb; `ALU_A_NSB: aluas = ~sb; `ifdef CMOS `ALU_A_IR: aluas = ir_dec; `ALU_A_NIR: aluas = ~ir_dec; `endif endcase end always @(posedge clk) begin if (ready) begin alua <= aluas; end end endmodule
6.528778
module alub_mux ( input clk, input ready, input [1:0] alu_b, input [7:0] db, input [7:0] adl, output reg [7:0] alub ); reg [7:0] alubs; // ALU B input select always @(*) begin case (alu_b) // synthesis full_case parallel_case `ALU_B_DB: alubs = db; `ALU_B_NDB: alubs = ~db; `ALU_B_ADL: alubs = adl; endcase end always @(posedge clk) begin if (ready) begin alub <= alubs; end end endmodule
6.888262
module aluc_mux ( input [1:0] alu_c, input carry, input last_carry, output reg carrys ); // ALU C (carry) input select always @(*) begin case (alu_c) // synthesis full_case parallel_case `ALU_C_0: carrys = 0; `ALU_C_1: carrys = 1; `ALU_C_P: carrys = carry; `ALU_C_A: carrys = last_carry; endcase end endmodule
6.903394
module db_in_mux ( input [2:0] db_sel, input [7:0] data_i, input [7:0] reg_a, input alua_highbit, output reg [7:0] db_in ); // DB input mux always @(*) begin case (db_sel) // synthesis full_case parallel_case `DB_0: db_in = 8'h00; //`DB_DI : db_in = data_i; //`DB_SB : db_in = data_i; // Temp hack //`DB_PCH : db_in = data_i; `DB_A: db_in = reg_a; `DB_BO: db_in = {8{alua_highbit}}; // The high bit of the last ALU A input is the sign bit for branch offsets default: db_in = data_i; endcase //$display("data_i: %02x db_in: %02x",data_i,db_in); end endmodule
7.905946
module db_out_mux ( input [2:0] db_sel, input [7:0] reg_a, input [7:0] sb, input [7:0] pcl, input [7:0] pch, input [7:0] reg_p, output reg [7:0] db_out ); // DB output mux always @(*) begin case (db_sel) // synthesis full_case parallel_case `DB_A: db_out = reg_a; `DB_SB: db_out = sb; `DB_PCL: db_out = pcl; `DB_PCH: db_out = pch; `DB_P: db_out = reg_p; `DB_0: db_out = 8'h00; endcase end endmodule
7.307923
module ir_next_mux ( input sync, input intg, input [7:0] data_i, input [7:0] ir, output reg [7:0] ir_next ); // IR input always @(*) begin if (sync) begin if (intg) ir_next = 8'h00; else ir_next = data_i; end else ir_next = ir; end endmodule
7.073816
module flags_decode ( input [3:0] load_flags, output reg [14:0] load_flags_decode ); always @(*) case (load_flags) // synthesis full_case parallel_case `none: load_flags_decode = 0; `FLAGS_DB: load_flags_decode = (`LM_C_DB0 | `LM_Z_DB1 | `LM_I_DB2 | `LM_D_DB3 | `LM_V_DB6 | `LM_N_DB7); `FLAGS_SBZN: load_flags_decode = (`LM_Z_SBZ | `LM_N_SBN); `FLAGS_D: load_flags_decode = (`LM_D_IR5); `FLAGS_I: load_flags_decode = (`LM_I_IR5); `FLAGS_C: load_flags_decode = (`LM_C_IR5); `FLAGS_V: load_flags_decode = (`LM_V_0); `FLAGS_Z: load_flags_decode = (`LM_Z_SBZ); `FLAGS_CNZ: load_flags_decode = (`LM_C_ACR | `LM_Z_SBZ | `LM_N_SBN); `FLAGS_ALU: load_flags_decode = (`LM_C_ACR | `LM_V_AVR | `LM_Z_SBZ | `LM_N_SBN); `FLAGS_BIT: load_flags_decode = (`LM_V_DB6 | `LM_N_DB7); `ifdef CMOS `FLAGS_SETI: load_flags_decode = (`LM_I_1 | `LM_D_IR5); // Clear D flag too `else `FLAGS_SETI: load_flags_decode = (`LM_I_1); `endif endcase endmodule
6.585277
module clocked_reg8 ( input clk, input ready, input [7:0] register_in, output reg [7:0] register_out ); always @(posedge clk) begin if (ready) begin register_out <= register_in; end end endmodule
7.084839
module clocked_reset_reg8 ( input clk, input reset, input ready, input [7:0] register_in, output reg [7:0] register_out ); always @(posedge clk) begin if (reset) register_out <= 0; else if (ready) begin register_out <= register_in; end end endmodule
7.653837
module p_reg ( input clk, input reset, input ready, input intg, input [14:0] load_flag_decode, input load_b, input [7:0] db_in, input sb_z, input sb_n, input carry, input overflow, input ir5, output reg [7:0] reg_p ); always @(*) begin reg_p[`PF_B] = ~intg; reg_p[`PF_U] <= 1; end always @(posedge clk) begin if (ready) begin if (load_flag_decode[`LF_C_ACR]) reg_p[`PF_C] = carry; else if (load_flag_decode[`LF_C_IR5]) reg_p[`PF_C] = ir5; else if (load_flag_decode[`LF_C_DB0]) reg_p[`PF_C] = db_in[0]; if (load_flag_decode[`LF_Z_SBZ]) reg_p[`PF_Z] = sb_z; else if (load_flag_decode[`LF_Z_DB1]) reg_p[`PF_Z] = db_in[1]; if (load_flag_decode[`LF_I_DB2]) reg_p[`PF_I] = db_in[2]; else if (load_flag_decode[`LF_I_IR5]) reg_p[`PF_I] = ir5; else if (load_flag_decode[`LF_I_1]) reg_p[`PF_I] = 1; if (load_flag_decode[`LF_D_DB3]) reg_p[`PF_D] = db_in[3]; else if (load_flag_decode[`LF_D_IR5]) reg_p[`PF_D] = ir5; if (load_flag_decode[`LF_V_AVR]) reg_p[`PF_V] = overflow; else if (load_flag_decode[`LF_V_DB6]) reg_p[`PF_V] = db_in[6]; else if (load_flag_decode[`LF_V_0]) reg_p[`PF_V] = 0; if (load_flag_decode[`LF_N_SBN]) reg_p[`PF_N] = sb_n; else if (load_flag_decode[`LF_N_DB7]) reg_p[`PF_N] = db_in[7]; end end endmodule
6.738303
module adl_abl_reg ( input clk, input ready, input load_abl, input [2:0] adl_sel, input [7:0] data_i, input [7:0] pcls, input [7:0] reg_s, input [7:0] alu, input [7:0] vector_lo, output reg [7:0] adl_abl, output reg [7:0] abl_next, output reg [7:0] abl ); // ADL -> ABL always @(*) begin case (adl_sel) // synthesis full_case parallel_case `ADL_DI: adl_abl = data_i; `ADL_PCLS: adl_abl = pcls; `ADL_S: adl_abl = reg_s; `ADL_ALU: adl_abl = alu; `ADL_VECLO: adl_abl = vector_lo; `ADL_VECHI: adl_abl = {vector_lo[7:1], 1'b1}; endcase end always @(*) begin if (load_abl && ready) abl_next = adl_abl; else abl_next = abl; end always @(posedge clk) begin if (load_abl && ready) begin abl <= adl_abl; end end endmodule
6.799146
module rom_6502 ( input clk, input [11:0] address, input oe, output reg valid, output reg [ 7:0] q_a ); reg [127:0] mem[255:0]; integer i; initial begin for (i = 0; i < 255; i = i + 1) begin mem[i] = 8'd0; // This will be changed with the orginal rom end $readmemh("6502.mem", mem); end always @(posedge clk) begin case (address[3:0]) 5'hf: q_a <= mem[address[11:4]][7:0]; 5'he: q_a <= mem[address[11:4]][15:8]; 5'hd: q_a <= mem[address[11:4]][23:16]; 5'hc: q_a <= mem[address[11:4]][31:24]; 5'hb: q_a <= mem[address[11:4]][39:32]; 5'ha: q_a <= mem[address[11:4]][47:40]; 5'h9: q_a <= mem[address[11:4]][55:48]; 5'h8: q_a <= mem[address[11:4]][63:56]; 5'h7: q_a <= mem[address[11:4]][71:64]; 5'h6: q_a <= mem[address[11:4]][79:72]; 5'h5: q_a <= mem[address[11:4]][87:80]; 5'h4: q_a <= mem[address[11:4]][95:88]; 5'h3: q_a <= mem[address[11:4]][103:96]; 5'h2: q_a <= mem[address[11:4]][111:104]; 5'h1: q_a <= mem[address[11:4]][119:112]; 5'h0: q_a <= mem[address[11:4]][127:120]; endcase valid <= oe; end endmodule
6.621719
module timing_ctrl(input clk, input reset, input ready, output reg [2:0] t, output reg [2:0] t_next, input [2:0] tnext_mc, input alu_carry_out, input taken_branch, input branch_page_cross, input intg, output wire pc_hold, output wire sync, input load_sbz, input onecycle, input twocycle, input decimal_cycle, output reg write_allowed, output wire decimal_extra_cycle); // TODO - Separate the state machine from the output encoding? parameter T0 = 3'b000, T1 = 3'b001, T2 = 3'b010, T3 = 3'b011, T4 = 3'b100, T5 = 3'b101, T6 = 3'b110, T7 = 3'b111; `ifdef CMOS assign decimal_extra_cycle = (t == 7 && load_sbz); assign sync = (t == 1 && ~(decimal_cycle)) | decimal_extra_cycle; // Disable PC increment when processing a BRK with recognized IRQ/NMI, or when about to perform the extra decimal correction cycle assign pc_hold = intg | decimal_cycle; `else assign decimal_extra_cycle = 0; assign sync = (t == 1); assign pc_hold = intg; `endif always @(posedge clk) begin if(reset) t <= T2; else if(ready) begin t <= t_next; //$display("T: %d t_next: %d",t,t_next); end end always @(*) begin t_next = t+1; write_allowed = 1; if(onecycle & sync) t_next = T1; else if(twocycle & sync) t_next = T0; `ifdef CMOS else if(decimal_cycle) // Note: The 'if' and not 'else if' here is important in the case where a twocycle instruction follows a decimal extra cycle t_next = T7; else if(decimal_extra_cycle) t_next = T2; `endif if(tnext_mc == `T0) t_next = T0; else if(tnext_mc == `TNC && alu_carry_out == 0) t_next = T0; else if(tnext_mc == `TNC && alu_carry_out == 1) write_allowed = 0; else if(tnext_mc == `TBR && taken_branch == 0) t_next = T1; else if(tnext_mc == `TBE) begin if(branch_page_cross == 1) t_next = T0; else t_next = T1; end else if(tnext_mc == `TBT && alu_carry_out == 0) t_next = T1; // synthesis translate_off else if(t != 1 && tnext_mc == `TKL) begin $display("Microcode KIL encountered"); $finish; end // synthesis translate_on end endmodule
7.483161
module predecode(input [7:0] ir_next, input active, output reg onecycle, output reg twocycle); // This detects single-cycle instructions always @(ir_next) begin `ifdef CMOS if((ir_next & 8'b00000111) == 8'b00000011) onecycle = active; else `endif onecycle = 0; end // This detects the instruction patterns where we need to go immediately to T0 instead of T2 during a fetch cycle. always @(*) begin casez(ir_next) `ifdef CMOS 8'b?1?1_1010: twocycle = 0; 8'b???0_0010: twocycle = active; `endif 8'b???0_10?1: twocycle = active; 8'b1??0_00?0: // This would hit the CMOS BRA, but is disabled below begin twocycle = active; `ifdef CMOS casez(ir_next) 8'b?00???0?: twocycle = 0; endcase `endif end 8'b????_10?0: begin twocycle = active; casez(ir_next) 8'b0??0??0?: twocycle = 0; endcase end default: twocycle = 0; endcase; end endmodule
6.735207
module branch_control ( input [7:0] reg_p, input [7:5] ir, output reg taken_branch ); always @(*) begin taken_branch = 0; case ({ ir[7], ir[6] }) // synthesis full_case parallel_case 2'b00: taken_branch = (reg_p[`PF_N] == ir[5]); 2'b01: taken_branch = (reg_p[`PF_V] == ir[5]); 2'b10: taken_branch = (reg_p[`PF_C] == ir[5]); 2'b11: taken_branch = (reg_p[`PF_Z] == ir[5]); endcase end endmodule
6.648487
module via6522 ( input cs, // Chip select. The real VIA has CS1 and nCS2. You can get the same functionality by defining this cs to be (cs1 & !cs2) input phi2, // Phase 2 Internal Clock input nReset, // Reset (active low) input [3:0] rs, // Register select input rWb, // read (high) write (low) input [7:0] dataIn, output reg [7:0] dataOut, input [7:0] paIn, // Peripheral data port A input output reg [7:0] paOut, // Peripheral data port A output reg [7:0] paMask, // Peripheral data port A mask: 0 - input, 1 - output input [7:0] pbIn, // Peripheral data port B output reg [7:0] pbOut, // Peripheral data port B output reg [7:0] pbMask, output reg nIrq ); // Interrupt request initial begin reset(); end always @(posedge phi2, negedge nReset) begin if (~nReset) begin reset(); end else begin if (cs) begin // This is a clock edge and we're chip selected if (~rWb) begin // Rising edge of clock on write operation case (rs) 4'd0: begin writePb(); end 4'd1: begin writePa(); end 4'd2: begin writePbDir(); end 4'd3: begin writePaDir(); end default: begin // All other registers are not yet implemented dataOut <= 0; end endcase end else begin // Falling edge of clock on read operation // Well, fudge. It seems FPGAs can't trigger on both positive and negative edges of same signal. The 6522 datasheet requires that // we make the results available on the falling edge of the clock. The reason it requires this, however, is to give the CPU time // to put the data bus in high impedance mode. Since we're using separate in and out lines, we'll load the the data on the rising // edge and no one should be the wiser of it. case (rs) 4'd0: begin readPb(); end 4'd1: begin readPa(); end 4'd2: begin readPbDir(); end 4'd3: begin readPaDir(); end default: begin // All other registers are not yet implemented end endcase end end end end task readPb(); begin // Read. Give true input where applicable, and *desired* output elsewhere. See section 2.1 of the datasheet dataOut <= (pbIn & ~pbMask) | (pbOut & pbMask); end endtask task writePb(); pbOut <= dataIn; endtask task readPa(); dataOut <= paIn; endtask task writePa(); paOut <= dataIn; endtask task readPbDir(); dataOut <= pbMask; endtask task writePbDir(); pbMask <= dataIn; endtask task readPaDir(); dataOut <= paMask; endtask task writePaDir(); paMask <= dataIn; endtask task reset(); begin dataOut <= 0; // High impedance on start nIrq <= 1; // Don't request interrupt paOut <= 0; paMask <= 0; pbOut <= 0; pbMask <= 0; end endtask endmodule
8.377154
module uart51_rx ( RESET_N, BAUD_CLK, RX_DATA, RX_BUFFER, RX_WORD, RX_PAR_DIS, RX_PARITY, PARITY_ERR, FRAME, READY ); input RESET_N; input BAUD_CLK; input RX_DATA; output [7:0] RX_BUFFER; reg [7:0] RX_BUFFER; input [1:0] RX_WORD; input RX_PAR_DIS; input [1:0] RX_PARITY; output PARITY_ERR; reg PARITY_ERR; output FRAME; reg FRAME; output READY; reg READY; reg [5:0] STATE; reg [2:0] BIT; reg RX_DATA0; reg RX_DATA1; always @(posedge BAUD_CLK or negedge RESET_N) begin if (!RESET_N) begin RX_BUFFER <= 8'h00; STATE <= 6'b000000; FRAME <= 1'b0; BIT <= 3'b000; RX_DATA0 <= 1'b1; RX_DATA1 <= 1'b1; READY <= 1'b0; end else begin RX_DATA0 <= RX_DATA; RX_DATA1 <= RX_DATA0; case (STATE) 6'b000000: // States 0-15 will be start bit begin BIT <= 3'b000; if (~RX_DATA1) STATE <= 6'b000001; end 6'b001111: // End of start bit, flag data not ready begin // If data is not retrieved before this, then overrun READY <= 1'b0; STATE <= 6'b010000; end 6'b010111: // Each data bit is states 16-31, the middle is 23 begin RX_BUFFER[BIT] <= RX_DATA1; STATE <= 6'b011000; end 6'b011111: // End of the data bits begin if (BIT == 3'b111) begin STATE <= 6'b100000; end else begin if ((RX_WORD == 2'b01) && (BIT == 3'b110)) begin STATE <= 6'b100000; end else begin if ((RX_WORD == 2'b10) && (BIT == 3'b101)) begin STATE <= 6'b100000; end else begin if ((RX_WORD == 2'b11) && (BIT == 3'b100)) begin STATE <= 6'b100000; end else begin BIT <= BIT + 1'b1; STATE <= 6'b010000; end end end end end 6'b100000: // First tick of Stop or Parity, Parity is 32 - 47 begin if (RX_PAR_DIS) STATE <= 6'b110001; // get stop else STATE <= 6'b100001; // get parity end 6'b100111: // Middle of Parity is 39 begin PARITY_ERR <= ~RX_PARITY[1] & // Get but do not check Parity if 1 is set (((RX_BUFFER[0] ^ RX_BUFFER[1]) ^ (RX_BUFFER[2] ^ RX_BUFFER[3])) ^((RX_BUFFER[4] ^ RX_BUFFER[5]) ^ (RX_BUFFER[6] ^ RX_BUFFER[7])) // clear bit #8 if only 7 bits ^ (~RX_PARITY[0] ^ RX_DATA1)); STATE <= 6'b101000; // 1 bit early for timing reasons end 6'b110111: // first stop bit is 32 or 48 then 49 - 63 begin FRAME <= !RX_DATA1; // if data != 1 then not stop bit READY <= 1'b1; STATE <= 6'b111000; end // In case of a framing error, wait until data is 1 then start over // We skipped this check for 6 clock cycles so CPU speed is not a factor // in the RX_READY state machine above 6'b111000: begin if (RX_DATA1) STATE <= 6'b000000; end default: STATE <= STATE + 1'b1; endcase end end endmodule
7.865783
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((-(IP + length)) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ('0 + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ('1 + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (-(btaken ? distance : 0))); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + '0); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + '1); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) - (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) * (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) / (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) % (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module top_module ( input a, b, output cout, sum ); assign sum = a ^ b; assign cout = a & b; endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= (~((IP + length) + (btaken ? distance : 0))); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= '0; end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= '1; end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module top_module ( input a, b, cin, output cout, sum ); assign sum = a ^ b ^ cin; assign cout = (a & b) | (a & cin) | (b & cin); endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!(!halt))) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if (0) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if (1) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module top_module ( input [2:0] a, b, input cin, output [2:0] cout, output [2:0] sum ); integer i; assign sum[0] = a[0] ^ b[0] ^ cin; assign cout[0] = (a[0] & b[0]) | (a[0] & cin) | (b[0] & cin); always @(*) begin for (i = 1; i < 3; i++) begin sum[i] = a[i] ^ b[i] ^ cout[i-1]; cout[i] = (a[i] & b[i]) | (a[i] & cout[i-1]) | (b[i] & cout[i-1]); end end endmodule
7.203305
module UART_RX ( RESET_N, BAUD_CLK, RX_DATA, RX_BUFFER, //RX_READY, RX_WORD, RX_PAR_DIS, RX_PARITY, PARITY_ERR, //OVERRUN, FRAME, READY ); input RESET_N; input BAUD_CLK; input RX_DATA; output [7:0] RX_BUFFER; reg [7:0] RX_BUFFER; input RX_WORD; input RX_PAR_DIS; input RX_PARITY; output PARITY_ERR; reg PARITY_ERR; output FRAME; reg FRAME; output READY; reg READY; reg [5:0] STATE; reg [2:0] BIT; reg RX_DATA0; reg RX_DATA1; always @(posedge BAUD_CLK or negedge RESET_N) begin if (!RESET_N) begin RX_BUFFER <= 8'h00; STATE <= 6'b000000; FRAME <= 1'b0; BIT <= 3'b000; RX_DATA0 <= 1'b1; RX_DATA1 <= 1'b1; READY <= 1'b0; end else begin RX_DATA0 <= RX_DATA; RX_DATA1 <= RX_DATA0; case (STATE) 6'b000000: begin BIT <= 3'b000; if (~RX_DATA1) STATE <= 6'b000001; end 6'b001111: // End of start bit, flag data not ready begin // If data is not retrieved before this, then overrun READY <= 1'b0; STATE <= 6'b010000; end 6'b010111: // Middle of data bits begin RX_BUFFER[BIT] <= RX_DATA1; STATE <= 6'b011000; end 6'b011111: // End of data bit begin if (BIT == 3'b111) STATE <= 6'b100000; else begin if ((BIT == 3'b110) && !RX_WORD) STATE <= 6'b100000; else begin BIT <= BIT + 1'b1; STATE <= 6'b010000; end end end 6'b100000: // Start of parity bit, if enabled begin if (RX_PAR_DIS) STATE <= 6'b110001; // get stop else STATE <= 6'b100001; // get parity end 6'b100111: //39 middle of parity bit begin PARITY_ERR <=((((RX_BUFFER[0] ^ RX_BUFFER[1]) ^ (RX_BUFFER[2] ^ RX_BUFFER[3])) ^ ((RX_BUFFER[4] ^ RX_BUFFER[5]) ^ (RX_BUFFER[6] ^ (RX_BUFFER[7] & RX_WORD)))) // clear bit #8 if only 7 bits ^ (RX_PARITY ^ RX_DATA1)); STATE <= 6'b101000; end 6'b110111: //55 middle of stop bit begin READY <= 1'b1; // This is the last info we need, so signal ready FRAME <= !RX_DATA1; // if data != 1 then not stop bit STATE <= 6'b111000; end // In case of a framing error, wait until data is 1 then start over 6'b111000: begin if (RX_DATA1) // wait until data = 1 STATE <= 6'b000000; end default: STATE <= STATE + 1'b1; endcase end end endmodule
7.513316
module UART_TX ( BAUD_CLK, RESET_N, TX_DATA, TX_START, TX_DONE, TX_STOP, TX_WORD, TX_PAR_DIS, TX_PARITY, TX_BUFFER ); input BAUD_CLK; input RESET_N; output TX_DATA; reg TX_DATA; input TX_START; output TX_DONE; reg TX_DONE; input TX_STOP; input TX_WORD; input TX_PAR_DIS; input TX_PARITY; input [7:0] TX_BUFFER; reg [6:0] STATE; reg [2:0] BIT; wire PARITY; reg TX_START0; reg TX_START1; assign PARITY = ((TX_BUFFER[0] ^ TX_BUFFER[1]) ^ (TX_BUFFER[2] ^ TX_BUFFER[3])) ^ ((TX_BUFFER[4] ^ TX_BUFFER[5]) ^ (TX_BUFFER[6] ^ (TX_BUFFER[7] & TX_WORD))) // clear bit #8 if only 7 bits ^ TX_PARITY; always @(negedge BAUD_CLK or negedge RESET_N) begin if (!RESET_N) begin STATE <= 7'b0000000; TX_DATA <= 1'b1; TX_DONE <= 1'b1; BIT <= 3'b000; TX_START0 <= 1'b0; TX_START1 <= 1'b0; end else begin TX_START0 <= TX_START; TX_START1 <= TX_START0; case (STATE) 7'b0000000: begin BIT <= 3'b000; TX_DATA <= 1'b1; if (TX_START1) begin TX_DONE <= 1'b0; STATE <= 7'b0000001; end end 7'b0000001: begin TX_DATA <= 1'b0; STATE <= 7'b0000010; end 7'b0010001: begin TX_DATA <= TX_BUFFER[BIT]; STATE <= 7'b0010010; end 7'b0100000: begin BIT <= BIT + 1'b1; if (BIT != {2'b11, TX_WORD}) STATE <= 7'b0010001; else if (!TX_PAR_DIS) STATE <= 7'b0100001; // do parity else STATE <= 7'b0110001; // do stop end // Start parity bit 7'b0100001: begin TX_DATA <= PARITY; STATE <= 7'b0100010; end // start stop 7'b0110001: begin TX_DONE <= 1'b1; TX_DATA <= 1'b1; STATE <= 7'b0110010; end // end of first stop bit 7'b0111111: begin if (!TX_STOP) STATE <= 7'b1001111; else STATE <= 7'b1000000; end 7'b1001111: begin STATE <= 7'b0000000; end default: STATE <= STATE + 1'b1; endcase end end endmodule
7.089095
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if ((!ue[1])) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (0) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (1) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module top_module ( input [3:0] x, input [3:0] y, output [4:0] sum ); integer i; wire [3:0] cout; assign sum[0] = x[0] ^ y[0]; assign cout[0] = x[0] & y[0]; always @(*) begin for (i = 1; i < 4; i++) begin sum[i] = x[i] ^ y[i] ^ cout[i-1]; cout[i] = (x[i] & y[i]) | (x[i] & cout[i-1]) | (y[i] & cout[i-1]); end sum[4] = cout[3]; end endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if ((!rst)) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (0) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (1) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) begin end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module syncnt ( clk, rst, b ); input clk, rst; output [3:0] b; reg [3:0] b = 4'b0; wire clk, rst; always @(posedge clk) if (rst) b <= 4'b0; else b <= b + 1; endmodule
6.783074
module test; wire [3:0] b; reg clk = 0; reg rst = 0; integer i; syncnt s1 ( clk, rst, b ); initial begin $dumpfile("6a_4bitbinarysynccounter.vcd"); $dumpvars(0, test); for (i = 0; i < 40; i++) begin #5 begin clk = !clk; if (b == 4'hf) rst = 1; else rst = 0; end end #5 $finish; end always @(clk) $strobe("At time = (%0t),clk = (%b),b = (%b)", $time, clk, b); endmodule
6.964054
module bit6_is_less_than ( input [5:0] a, b, output reg [5:0] result ); wire result0; wire result1; wire result2; // calling the 2 bit less than operation 3 times for the 3 pairs of bits (because total=6 bits) bit2_less_than op0 ( a[1:0], b[1:0], result0 ); //LSB pair bit2_less_than op1 ( a[3:2], b[3:2], result1 ); bit2_less_than op2 ( a[5:4], b[5:4], result2 ); //MSB pair //start checking from the result of MSB side of the 6bit for less than comparison always @* if (result2) result = 6'b00_0001; else if (result1) result = 6'b00_0001; else if (result0) result = 6'b00_0001; else result = 6'b00_0000; endmodule
6.87276
module ripple_adder ( // x and y are the 6-bit two's complement numbers to be added // sel allows to select between add/subtract input wire [5:0] x, input wire [5:0] y, input wire sel, // overflow is used to flag overflow in sum output // c_out is the MSB carry out from the sum // sum is the sum of a and b output wire overflow, output wire [5:0] sum, output wire cout ); //internal c_out wire wire [6:0] c_out; assign cout = c_out[6]; // the output cout is c_out[6] // Overflow in two's complement addition is defined as // XOR of carry_in and carry_out of MSB adder assign overflow = c_out[6] ^ c_out[5]; // initialise LSB of c_out to 0 (since there is no carry_in on first adder) assign c_out[0] = 1'b0; // Instantiate six seperate FullAdder modules FullAdder adder_1 ( .a(x[0]), .b(y[0] ^ sel), // this will negate bits if performing subtraction .cin(sel), // first cin is sel because is sel=1, must get two's complement, this adds 1 .s(sum[0]), .cout(c_out[1]) ); FullAdder adder_2 ( .a(x[1]), .b(y[1] ^ sel), // this will negate bits if performing subtraction .cin(c_out[1]), .s(sum[1]), .cout(c_out[2]) ); FullAdder adder_3 ( .a(x[2]), .b(y[2] ^ sel), // this will negate bits if performing subtractionv .cin(c_out[2]), .s(sum[2]), .cout(c_out[3]) ); FullAdder adder_4 ( .a(x[3]), .b(y[3] ^ sel), // this will negate bits if performing subtraction .cin(c_out[3]), .s(sum[3]), .cout(c_out[4]) ); FullAdder adder_5 ( .a(x[4]), .b(y[4] ^ sel), // this will negate bits if performing subtraction .cin(c_out[4]), .s(sum[4]), .cout(c_out[5]) ); FullAdder adder_6 ( .a(x[5]), .b(y[5] ^ sel), // this will negate bits if performing subtraction .cin(c_out[5]), .s(sum[5]), .cout(c_out[6]) ); endmodule
9.165067
module S6MUX ( flush, stall, x, y ); input flush, stall; input [5:0] x; output [5:0] y; assign y = ((flush || stall) == 1) ? 0 : x; endmodule
7.453245
module bit6_xnor_gate ( input wire [5:0] a, b, // a and b are the two 6-bit numbers to XNOR output wire [5:0] result ); //xnor-ing each corresponding bit of the 6 bit numbers A and B to get the result xnor_gate op0 ( a[0], b[0], result[0] ); xnor_gate op1 ( a[1], b[1], result[1] ); xnor_gate op2 ( a[2], b[2], result[2] ); xnor_gate op3 ( a[3], b[3], result[3] ); xnor_gate op4 ( a[4], b[4], result[4] ); xnor_gate op5 ( a[5], b[5], result[5] ); endmodule
7.05156
module syncnt ( clk, rst, b ); input clk, rst; output [3:0] b; reg [3:0] b = 4'b0; wire clk, rst; always @(posedge clk) if (rst) b <= 4'b0; else b <= b + 1; endmodule
6.783074
module test; wire [3:0] b; reg clk = 0; reg rst = 0; integer i; syncnt s1 ( clk, rst, b ); initial begin $dumpfile("6c_BCDsynccounter.vcd"); $dumpvars(0, test); for (i = 0; i < 40; i++) begin #5 begin clk = !clk; if (b == 4'h9) rst = 1; else rst = 0; end end #5 $finish; end always @(clk) $strobe("At time = (%0t),clk = (%b),b = (%b)", $time, clk, b); endmodule
6.964054
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= (~{ue[4], ue[3], ue[2], ue[1], ue[0]}); end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= '0; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= '1; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module top_module ( input p1a, p1b, p1c, p1d, output p1y, input p2a, p2b, p2c, p2d, output p2y ); assign p1y = ~(p1a && p1b && p1c && p1d); assign p2y = ~(p2a && p2b && p2c && p2d); endmodule
7.203305
module top_module ( input [31:0] a, input [31:0] b, output [31:0] sum ); // wire con1, con2; add16 adder_1 ( a[15:0], b[15:0], 0, sum[15:0], con1 ); add16 adder_2 ( a[31:16], b[31:16], con1, sum[31:16], con2 ); endmodule
7.203305
module add1 ( input a, input b, input cin, output sum, output cout ); assign sum = a ^ b ^ cin; assign cout = (a & b) | (a & cin) | (b & cin); endmodule
6.640243
module top_module ( input d, input ena, output q ); //Latches are level-sensitive (not edge-sensitive) circuits, so in an always block, they use level-sensitive sensitivity lists. //However, they are still sequential elements, so should use non-blocking assignments. //A D-latch acts like a wire (or non-inverting buffer) when enabled, and preserves the current value when disabled. always @(*) begin if (ena) q <= d; end endmodule
7.203305
module top_module ( input [399:0] a, b, input cin, output cout, output [399:0] sum ); wire [99:0] cout_wires; genvar i; generate bcd_fadd( a[3:0], b[3:0], cin, cout_wires[0], sum[3:0] ); for (i = 4; i < 400; i = i + 4) begin : bcd_adder_instances bcd_fadd bcd_adder ( a[i+3:i], b[i+3:i], cout_wires[i/4-1], cout_wires[i/4], sum[i+3:i] ); end endgenerate assign cout = cout_wires[99]; endmodule
7.203305
module top_module ( input [4:1] x, output f ); assign f = (~x[1] & x[3]) | (~x[2] & ~x[4]) | (x[2] & x[3] & x[4]); endmodule
7.203305
module top_module ( input [7:0] in, output reg [2:0] pos ); // casez treats bits that have the value z as don't-care in the comparison. //Notice how there are certain inputs (e.g., 4'b1111) that will match more than one case item. //The first match is chosen (so 4'b1111 matches the first item, out = 0, but not any of the later ones). //There is also a similar casex that treats both x and z as don't-care. I don't see much purpose to using it over casez. //The digit ? is a synonym for z. so 2'bz0 is the same as 2'b?0 always @(*) begin casez (in[7:0]) 8'bzzzzzzz1: pos = 0; 8'bzzzzzz1z: pos = 1; 8'bzzzzz1zz: pos = 2; 8'bzzzz1zzz: pos = 3; 8'bzzz1zzzz: pos = 4; 8'bzz1zzzzz: pos = 5; 8'bz1zzzzzz: pos = 6; 8'b1zzzzzzz: pos = 7; default: pos = 0; endcase end endmodule
7.203305
module top_module ( input [7:0] a, input [7:0] b, output [7:0] s, output overflow ); // //2's complement for a binary number is found by inverting the numbers and adding 1 // i.e: 2'scomplement of 0011 is : 1100+0001 = 1101 // //Also remember that MSB of the 2's complement number represents the sign. i.e if MSB is one then the number is -ve // i.e: 1101 = -8+4+0+1=-3 // //If 2= 0010 then -2= 1101+1 = 1110 //Also 2+(-2) = 1111 (This property holds for all the numbers) // //While adding two 2's complement numbers, overflow can be detected two ways: // 1. If carryout and crry-on to MSB are different then overflow occured // 2. If both numbers are +ve and result is-ve or vise versa, overflow occurs assign s = a + b; assign overflow = a[7] && b[7] && (~s[7]) || (~a[7]) && (~b[7]) && (s[7]); endmodule
7.203305
module top_module ( input [7:0] in, output [7:0] out ); assign out = {in[0], in[1], in[2], in[3], in[4], in[5], in[6], in[7]}; endmodule
7.203305
module top_module ( input [15:0] a, b, input cin, output cout, output [15:0] sum ); wire [2:0] incout; bcd_fadd b1 ( a[3:0], b[3:0], cin, incout[0], sum[3:0] ); bcd_fadd b2 ( a[7:4], b[7:4], incout[0], incout[1], sum[7:4] ); bcd_fadd b3 ( a[11:8], b[11:8], incout[1], incout[2], sum[11:8] ); bcd_fadd b4 ( a[15:12], b[15:12], incout[2], cout, sum[15:12] ); endmodule
7.203305
module top_module ( input p1a, p1b, p1c, p1d, output p1y, input p2a, p2b, p2c, p2d, output p2y ); assign p1y = ~(p1a & p1b & p1c & p1d); assign p2y = ~(p2a & p2b & p2c & p2d); endmodule
7.203305
module top_module ( input clk, input reset, // Synchronous active-high reset output [3:1] ena, output [15:0] q ); onebcd bcd0 ( clk, reset, 1'b1, q[3:0] ); onebcd bcd1 ( clk, reset, ena[1], q[7:4] ); onebcd bcd2 ( clk, reset, ena[2], q[11:8] ); onebcd bcd3 ( clk, reset, ena[3], q[15:12] ); assign ena[1] = (q[3:0] == 4'b1001); assign ena[2] = (q[7:4] == 4'b1001) && (q[3:0] == 4'b1001); assign ena[3] = (q[11:8] == 4'b1001) && (q[7:4] == 4'b1001) && (q[3:0] == 4'b1001); endmodule
7.203305
module onebcd ( input clk, input reset, input enable, output [3:0] Q ); always @(posedge clk) begin if (reset || (Q == 4'd9 && enable)) Q <= 0; else Q <= enable ? Q + 1 : Q; end endmodule
7.231844
module top_module ( input d, input ena, output q ); always @(*) begin q <= ena ? d : q; end endmodule
7.203305
module top_module ( input clk, input in, input areset, output out ); // // State transition logic parameter A = 0, B = 1, C = 2, D = 3; reg [3:0] state, next_state; assign next_state[A] = state[A] & (~in) | state[C] & (~in); assign next_state[B] = state[A] & (in) | state[B] & (in) | state[D] & (in); assign next_state[C] = state[B] & (~in) | state[D] & (~in); assign next_state[D] = state[C] & (in); // State flip-flops with asynchronous reset always @(posedge clk, posedge areset) begin if (areset) state = 4'b0001; else state <= next_state; end // Output logic assign out = state[D]; endmodule
7.203305
module top_module ( input clk, input in, input areset, output out ); // Give state names and assignments. I'm lazy, so I like to use decimal numbers. // It doesn't really matter what assignment is used, as long as they're unique. parameter A = 0, B = 1, C = 2, D = 3; reg [1:0] state; // Make sure state and next are big enough to hold the state encodings. reg [1:0] next; // Combinational always block for state transition logic. Given the current state and inputs, // what should be next state be? // Combinational always block: Use blocking assignments. always @(*) begin case (state) A: next = in ? B : A; B: next = in ? B : C; C: next = in ? D : A; D: next = in ? B : C; endcase end // Edge-triggered always block (DFFs) for state flip-flops. Asynchronous reset. always @(posedge clk, posedge areset) begin if (areset) state <= A; else state <= next; end // Combinational output logic. In this problem, an assign statement is the simplest. assign out = (state == D); endmodule
7.203305
module top_module ( input [4:1] x, output f ); assign f = ~x[1] & x[3] | x[2] & x[3] & x[4] | ~x[2] & ~x[3] & ~x[4] | x[1] & ~x[2] & ~x[4]; endmodule
7.203305
module Seven_SEG ( input clk, input [3:0] BCD0, BCD1, BCD2, BCD3, output reg [3:0] DIGIT, output reg [6:0] DISPLAY ); wire clk1; clock_divider #( .width(13) ) clk_13 ( .clk(clk), .clk_div(clk1) ); reg [3:0] value; reg [1:0] digit, digit_next; always @(posedge clk1) begin digit <= digit_next; case (digit) 2'b00: begin value = BCD0; DIGIT = 4'b1110; end 2'b01: begin value = BCD1; DIGIT = 4'b1101; end 2'b10: begin value = BCD2; DIGIT = 4'b1011; end 2'b11: begin value = BCD3; DIGIT = 4'b0111; end endcase end always @* begin digit_next = digit + 1; case (value) 4'd0: DISPLAY = 7'b0000001; 4'd1: DISPLAY = 7'b1001111; 4'd2: DISPLAY = 7'b0010010; 4'd3: DISPLAY = 7'b0000110; 4'd4: DISPLAY = 7'b1001100; 4'd5: DISPLAY = 7'b0100100; 4'd6: DISPLAY = 7'b0100000; 4'd7: DISPLAY = 7'b0001111; 4'd8: DISPLAY = 7'b0000000; 4'd9: DISPLAY = 7'b0000100; default: DISPLAY = 7'b1111111; endcase end endmodule
7.108068