code
stringlengths
35
6.69k
score
float64
6.5
11.5
module tb (); reg [3:0] i; wire [3:0] y; integer x; bcd_ex3 dut ( i, y ); initial begin $monitor("@time %3d : when input is %b output is %b", $time, i, y); for (x = 0; x < 16; x = x + 1) begin i = x; #100; end $finish; end endmodule
7.002324
module test; wire sum, carry; reg a, b; halfadder f1 ( a, b, sum, carry ); initial begin $dumpfile("7_halfadder.vcd"); $dumpvars(0, test); #5 begin a = 0; b = 0; end #5 begin a = 0; b = 1; end #5 begin a = 1; b = 0; end #5 begin a = 1; b = 1; end #5 $finish; end always @(a or b) $strobe( "At time = (%0t),a = (%b),b = (%b),sum = (%b),carry = (%b)", $time, a, b, sum, carry ); endmodule
6.964054
module seg ( output reg [6:0] dig, output reg [7:0] an, input [4:0] num, input ck ); wire [3:0] d1, d2; reg state = 0; function [6:0] cath; input [3:0] n; case (n) 0: cath = 7'b0000001; 1: cath = 7'b1001111; 2: cath = 7'b0010010; 3: cath = 7'b0000110; 4: cath = 7'b1001100; 5: cath = 7'b0100100; 6: cath = 7'b0100000; 7: cath = 7'b0001111; 8: cath = 7'b0000000; 9: cath = 7'b0001100; endcase endfunction assign d1 = num % 10; assign d2 = num / 10; always @(posedge ck) begin if (!state) begin dig <= cath(d1); an <= 8'b11111110; end else begin dig <= cath(d2); an <= 8'b11111101; end state <= state + 1; end endmodule
7.043361
module part1 ( SW, LEDR ); input [9:0] SW; output [9:0] LEDR; wire [2:0] MuxSelect; assign MuxSelect = SW[9:7]; reg Out; always @(*) begin Out = 0; case (MuxSelect[2:0]) 3'b000: Out = SW[0]; 3'b001: Out = SW[1]; 3'b010: Out = SW[2]; 3'b011: Out = SW[3]; 3'b100: Out = SW[4]; 3'b101: Out = SW[5]; 3'b110: Out = SW[6]; endcase end assign LEDR[0] = Out; endmodule
6.685968
module top_module ( input [31:0] a, input [31:0] b, output reg [31:0] sum ); wire [15:0] cout, con2; wire [15:0] alt_sum1, alt_sum2; add16 adder1 ( a[15:0], b[15:0], 0, sum[15:0], cout ); add16 adder_sel1 ( a[31:16], b[31:16], 0, alt_sum1, con2 ); add16 adder_sel2 ( a[31:16], b[31:16], 1, alt_sum2, con2 ); always @(cout, alt_sum1, alt_sum2) begin case (cout) 0: sum[31:16] = alt_sum1; 1: sum[31:16] = alt_sum2; endcase end endmodule
7.203305
module top_module ( input clk, input d, input ar, // asynchronous reset output q ); always @(posedge clk, posedge ar) begin if (ar) q <= 1'b0; else q <= d; end endmodule
7.203305
module top_module ( input a, input b, input c, input d, output out_sop, output out_pos ); assign out_sop = (c & d) | (~a & ~b & c); assign out_pos = c & (~b | ~c | d) & (~a | ~c | d); endmodule
7.203305
module top_module ( input [ 7:0] in, output [31:0] out ); // // The replication operator allows repeating a vector and concatenating them together: //{num{vector}} //this is sign-extending a smaller number to a larger one assign out = {{24{in[7]}}, in[7:0]}; endmodule
7.203305
module top_module ( input x3, input x2, input x1, // three inputs output f // one output ); //here sum of products is used assign f = (~x3 & x2 & ~x1) | (~x3 & x2 & x1) | (x3 & ~x2 & x1) | (x3 & x2 & x1); endmodule
7.203305
module top_module ( input [15:0] scancode, output reg left, output reg down, output reg right, output reg up ); always @(scancode) begin up = 1'b0; down = 1'b0; left = 1'b0; right = 1'b0; case (scancode) 16'he06b: begin up = 1'b0; down = 1'b0; left = 1'b1; right = 1'b0; end 16'he072: begin up = 1'b0; down = 1'b1; left = 1'b0; right = 1'b0; end 16'he074: begin up = 1'b0; down = 1'b0; left = 1'b0; right = 1'b1; end 16'he075: begin up = 1'b1; down = 1'b0; left = 1'b0; right = 1'b0; end endcase end endmodule
7.203305
module top_module ( input clk, input reset, input ena, output pm, output [7:0] hh, output [7:0] mm, output [7:0] ss ); reg [2:0] enable; assign enable = {(ena && (mm == 8'h59) && (ss == 8'h59)), (ena && (ss == 8'h59)), ena}; clock59 secc ( clk, reset, enable[0], ss ); clock59 minc ( clk, reset, enable[1], mm ); always @(posedge clk) begin if (reset) begin hh <= 8'h12; pm <= 0; end else begin if (enable[2]) begin if (hh == 8'h12) begin hh <= 8'h01; end else if (hh == 8'h11) begin hh <= 8'h12; pm <= ~pm; end else begin if (hh[3:0] == 4'h9) begin hh[3:0] <= 0; hh[7:4] <= hh[7:4] + 1; end else begin hh[3:0] <= hh[3:0] + 1; end end end else hh <= hh; end end endmodule
7.203305
module reg8 ( CLK, D, Q, InEn ); //input reset; input CLK; input InEn; input [7:0] D; output [7:0] Q; reg [7:0] Q; always @(posedge CLK) //if (reset) //Q = 0; if (InEn) Q <= D; endmodule
7.282488
module mux ( output reg Y, input D0, D1, D2, D3, D4, D5, D6, D7, input [2:0] X ); always @(D0 or D1 or D2 or D3 or D4 or D5 or D6 or D7 or X) begin case (X) 3'b000: Y = D0; 3'b001: Y = D1; 3'b010: Y = D2; 3'b011: Y = D3; 3'b100: Y = D4; 3'b101: Y = D5; 3'b110: Y = D6; 3'b111: Y = D7; endcase end endmodule
7.812393
module eight_bitfull_adder ( A, B, Cin, S, carryout ); input [7:0] A; input [7:0] B; input Cin; output [7:0] S; output carryout; wire [6:0] Cout; full_adder f1 ( .A(A[0]), .B(B[0]), .Cin(Cin), .S(S[0]), .Cout(Cout[0]) ); full_adder f2 ( .A(A[1]), .B(B[1]), .Cin(Cout[0]), .S(S[1]), .Cout(Cout[1]) ); full_adder f3 ( .A(A[2]), .B(B[2]), .Cin(Cout[1]), .S(S[2]), .Cout(Cout[2]) ); full_adder f4 ( .A(A[3]), .B(B[3]), .Cin(Cout[2]), .S(S[3]), .Cout(Cout[3]) ); full_adder f5 ( .A(A[4]), .B(B[4]), .Cin(Cout[3]), .S(S[4]), .Cout(Cout[4]) ); full_adder f6 ( .A(A[5]), .B(B[5]), .Cin(Cout[4]), .S(S[5]), .Cout(Cout[5]) ); full_adder f7 ( .A(A[6]), .B(B[6]), .Cin(Cout[5]), .S(S[6]), .Cout(Cout[6]) ); full_adder f8 ( .A(A[7]), .B(B[7]), .Cin(Cout[6]), .S(S[7]), .Cout(carryout) ); endmodule
7.122288
module top_module ( input clk, input d, input ar, // asynchronous reset output q ); always @(posedge clk, posedge ar) begin q <= ar ? 0 : d; end endmodule
7.203305
module top_module ( input clk, input in, input reset, output out ); // // State transition logic parameter A = 0, B = 1, C = 2, D = 3; reg [3:0] state, next_state; assign next_state[A] = state[A] & (~in) | state[C] & (~in); assign next_state[B] = state[A] & (in) | state[B] & (in) | state[D] & (in); assign next_state[C] = state[B] & (~in) | state[D] & (~in); assign next_state[D] = state[C] & (in); // State flip-flops with synchronous reset always @(posedge clk) begin if (reset) state <= 4'b0001; else state <= next_state; end // Output logic assign out = state[D]; endmodule
7.203305
module top_module ( input c, input d, output [3:0] mux_in ); assign mux_in = {c & d, ~d, 1'b0, c | d}; endmodule
7.203305
module top_module ( input [3:0] SW, input [3:0] KEY, output [3:0] LEDR ); // MUXDFF m1 ( KEY[0], KEY[1], KEY[2], KEY[3], SW[3], LEDR[3] ); MUXDFF m2 ( KEY[0], KEY[1], KEY[2], LEDR[3], SW[2], LEDR[2] ); MUXDFF m3 ( KEY[0], KEY[1], KEY[2], LEDR[2], SW[1], LEDR[1] ); MUXDFF m4 ( KEY[0], KEY[1], KEY[2], LEDR[1], SW[0], LEDR[0] ); endmodule
7.203305
module task_example; reg [3:0] i; initial begin i = 4'b0000; end task display_and_increment; input [4:0] var_in; output [4:0] var_out; begin $display("var_in: %d", var_in); var_out = var_in + 1; end endtask always #1 begin display_and_increment(i, i); end endmodule
6.504553
module top_module ( input x3, input x2, input x1, // three inputs output f // one output ); assign f = (~x3 & x2 & ~x1) + (~x3 & x2 & x1) + (x3 & ~x2 & x1) + (x3 & x2 & x1); endmodule
7.203305
module top_module ( input clk, input reset, input [7:0] d, output reg [7:0] q ); always @(negedge clk) begin if (reset) q <= 8'h34; else q <= d; end endmodule
7.203305
module divider ( clk, clk_N ); input clk; output reg clk_N; parameter N = 100000; reg [31:0] counter; initial begin clk_N = 0; counter = 0; end always @(posedge clk) begin if (counter == N) begin clk_N <= ~clk_N; counter <= 0; end else begin counter = counter + 1; end end endmodule
7.389371
module top_module ( input c, input d, output [3:0] mux_in ); assign mux_in[0] = c | d; assign mux_in[1] = 0; assign mux_in[2] = ~d; assign mux_in[3] = c & d; endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= (~ALUout); C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= '0; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= '1; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? (~B) : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? '0 : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? '1 : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : (~ALUout)); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : '0); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : '1); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= ((!move) ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (0 ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (1 ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (~(move ? B : ALUout)); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= '0; MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= '1; MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= (~B); if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= '0; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= '1; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module _8421to2421_Code_Converter ( input A, input B, input C, input D, output W, output X, output Y, output Z ); assign W = ~(~A & ~(B & D) & ~(B & C)); assign X = ~(~A & ~(B & ~D) & ~(B & C)); assign Y = ~(~A & ~(B & ~C & D) & ~(~B & C)); assign Z = D; endmodule
7.267385
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= ((~ALUout) == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= ('0 == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= ('1 == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == (~0)); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == '0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == '1); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout != 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (~(ALUout == 0)); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= '0; end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= '1; end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if ((!aluop)) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (0) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (1) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) begin end end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if ((!ue[2])) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (0) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (1) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if ((!rst)) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (0) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (1) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) begin end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always begin end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module SRFF ( input [1:0] sr, input clk, output q, output qbar ); reg q; reg qbar; always @(posedge clk) begin case (sr) 2'b00: q = q; 2'b01: q = 0; 2'b10: q = 1; 2'b11: q = 1'bZ; endcase qbar = ~q; end endmodule
6.618955
module h3_decode ( input [4:0] in5_i, output [3:0] out_o ); reg [3:0] out; always @(*) begin case (in5_i) 5'b00111: out = 4'b0000; 5'b01011: out = 4'b0001; 5'b01101: out = 4'b0010; 5'b01110: out = 4'b0011; 5'b10011: out = 4'b0100; 5'b10101: out = 4'b0101; 5'b10110: out = 4'b0110; 5'b11001: out = 4'b0111; 5'b11010: out = 4'b1000; 5'b11100: out = 4'b1001; default: $display("Unmatched h3 input"); endcase end //end always assign out_o = out; endmodule
7.17573
module h2_decode ( input [4:0] in5_i, output [3:0] out_o ); reg [3:0] out; always @(*) begin case (in5_i) 5'b00011: out = 4'b0000; 5'b00101: out = 4'b0001; 5'b00110: out = 4'b0010; 5'b01010: out = 4'b0011; 5'b01100: out = 4'b0100; 5'b01001: out = 4'b0101; 5'b10001: out = 4'b0110; 5'b10010: out = 4'b0111; 5'b10100: out = 4'b1000; 5'b11000: out = 4'b1001; default: $display("Unmatched h2 input"); endcase end //end always assign out_o = out; endmodule
6.685014
module h4_decode ( input [4:0] in5_i, output [2:0] out_o ); reg [2:0] out; always @(*) begin case (in5_i) 5'b11110: out = 3'b000; 5'b11101: out = 3'b001; 5'b11011: out = 3'b010; 5'b10111: out = 3'b011; 5'b01111: out = 3'b100; default: $display("Unmatched h4 input"); endcase end //end always assign out_o = out; endmodule
7.266821
module h1_decode ( input [4:0] in5_i, output [2:0] out_o ); reg [2:0] out; always @(*) begin case (in5_i) 5'b00001: out = 3'b000; 5'b00010: out = 3'b001; 5'b00100: out = 3'b010; 5'b01000: out = 3'b011; 5'b10000: out = 3'b100; default: $display("Unmatched h1 input"); endcase end //end always assign out_o = out; endmodule
6.577429
module bsg_popcount #( parameter width_p = "inv" ) ( input [width_p-1:0] i , output [$clog2(width_p+1)-1:0] o ); // perf fixme: better to round up to nearest power of two and then // recurse with side full and one side minimal // // e.g-> 80 -> 128/2 = 64 --> (64,16) // // possibly slightly better is to use 2^N-1: // // for items that are 5..7 bits wide, we make sure to // split into a 4 and a 1/2/3; since the four is relatively optimized. // localparam first_half_lp = 4; localparam second_half_lp = 1; if (width_p <= 3) begin : lt3 assign o[0] = ^i; if (width_p == 2) assign o[1] = &i; else if (width_p == 3) assign o[1] = (&i[1:0]) | (&i[2:1]) | (i[0] & i[2]); end else // http://www.wseas.us/e-library/conferences/2006hangzhou/papers/531-262.pdf if (width_p == 4) begin : four // half adders wire [1:0] s0 = {^i[3:2], ^i[1:0]}; wire [1:0] c0 = {&i[3:2], &i[1:0]}; // low bit is xor of all bits assign o[0] = ^s0; // middle bit is: ab ^ cd // or (a^b) & (c^d) assign o[1] = (^c0) | (&s0); // high bit is and of all bits assign o[2] = &c0; end else begin : recurse wire [ $clog2(first_half_lp+1)-1:0] lo; wire [$clog2(second_half_lp+1)-1:0] hi; bsg_popcount #( .width_p(first_half_lp) ) left ( .i(i[0+:first_half_lp]) , .o(lo) ); bsg_popcount #( .width_p(second_half_lp) ) right ( .i(i[first_half_lp+:second_half_lp]) , .o(hi) ); assign o = lo + hi; end endmodule
7.152157
module testbench; reg [7:0] a; reg [7:0] b; reg cin; wire [7:0] behave_sum; wire [7:0] dataflow_sum; wire [7:0] struct_sum; wire behave_carry; wire dataflow_carry; wire struct_carry; adder_beh test_behave ( .sum(behave_sum), .carry(behave_carry), .a(a), .b(b), .cin(cin) ); adder_dataflow test_dataflow ( .sum(dataflow_sum), .carry(dataflow_carry), .a(a), .b(b), .cin(cin) ); adder_struct test_struct ( .sum(struct_sum), .cout(struct_carry), .a(a), .b(b), .cin(cin) ); initial begin a = 8'b01111111; b = 8'b01111111; cin = 0; #5 a = $random; b = $random; cin = 0; #5 a = $random; b = $random; cin = 0; #5 a = $random; b = $random; cin = 0; #5 a = $random; b = $random; cin = 0; end endmodule
7.015571
module paritygen_8 ( input [7:0] d, output y, output [8:0] dout ); wire y0, y1, y2, y3; assign y0 = d[0] ^ d[1]; assign y1 = d[2] ^ d[3]; assign y2 = d[4] ^ d[5]; assign y3 = d[6] ^ d[7]; assign y = y0 ^ y1 ^ y2 ^ y3; assign dout = {d, y}; endmodule
6.741913
module adder_dataflow ( sum, carry, a, b, cin ); input [7:0] a, b; input cin; output [7:0] sum; output carry; assign {carry, sum} = a + b + cin; endmodule
7.215147
module adder_dataflow_dff ( sum, carry, a, b, cin, clock ); output [7:0] sum; output carry; input [7:0] a; input [7:0] b; input cin; input clock; wire [7:0] sum_temp; wire carry_temp; adder_dataflow adder ( sum_temp, carry_temp, a, b, cin ); D_FF dff0 ( sum[0], sum_temp[0], clock ), dff1 ( sum[1], sum_temp[1], clock ), dff2 ( sum[2], sum_temp[2], clock ), dff3 ( sum[3], sum_temp[3], clock ), dff4 ( sum[4], sum_temp[4], clock ), dff5 ( sum[5], sum_temp[5], clock ), dff6 ( sum[6], sum_temp[6], clock ), dff7 ( sum[7], sum_temp[7], clock ), dff8 ( carry, carry_temp, clock ); endmodule
7.215147
module half_adder ( S, C, x, y ); output S, C; input x, y; xor (S, x, y); and (C, x, y); endmodule
6.966406
module eightbitcounter ( SW, KEY, HEX0, HEX1 ); input [1:0] SW; input [1:0] KEY; output [6:0] HEX0, HEX1; wire f0_out, f1_out, f2_out, f3_out, f4_out, f5_out, f6_out, f7_out; wire f1_in, f2_in, f3_in, f4_in, f5_in, f6_in, f7_in; wire [3:0] main_out_ms; wire [3:0] main_out_ls; TFlipFlop f0 ( .T(SW[1]), .Q(f0_out), .clk(KEY[0]), .clear(SW[0]) ); and (f1_in, f0_out, SW[1]); TFlipFlop f1 ( .T(f1_in), .Q(f1_out), .clk(KEY[0]), .clear(SW[0]) ); and (f2_in, f1_out, f1_in); TFlipFlop f2 ( .T(f2_in), .Q(f2_out), .clk(KEY[0]), .clear(SW[0]) ); and (f3_in, f2_out, f2_in); TFlipFlop f3 ( .T(f3_in), .Q(f3_out), .clk(KEY[0]), .clear(SW[0]) ); and (f4_in, f3_out, f3_in); TFlipFlop f4 ( .T(f4_in), .Q(f4_out), .clk(KEY[0]), .clear(SW[0]) ); and (f5_in, f4_out, f4_in); TFlipFlop f5 ( .T(f5_in), .Q(f5_out), .clk(KEY[0]), .clear(SW[0]) ); and (f6_in, f5_out, f5_in); TFlipFlop f6 ( .T(f6_in), .Q(f6_out), .clk(KEY[0]), .clear(SW[0]) ); and (f7_in, f6_out, f6_in); TFlipFlop f7 ( .T(f7_in), .Q(f7_out), .clk(KEY[0]), .clear(SW[0]) ); assign main_out_ms = {{{f7_out, f6_out}, f5_out}, f4_out}; assign main_out_ls = {{{f3_out, f2_out}, f1_out}, f0_out}; hexdisplay h0 ( .hex_digit(main_out_ls), .segments (HEX0) ); hexdisplay h1 ( .hex_digit(main_out_ms), .segments (HEX1) ); endmodule
7.672075
module hexdisplay ( hex_digit, segments ); input [3:0] hex_digit; output reg [6:0] segments; always @(*) case (hex_digit) 4'h0: segments = 7'b100_0000; 4'h1: segments = 7'b111_1001; 4'h2: segments = 7'b010_0100; 4'h3: segments = 7'b011_0000; 4'h4: segments = 7'b001_1001; 4'h5: segments = 7'b001_0010; 4'h6: segments = 7'b000_0010; 4'h7: segments = 7'b111_1000; 4'h8: segments = 7'b000_0000; 4'h9: segments = 7'b001_1000; 4'hA: segments = 7'b000_1000; 4'hB: segments = 7'b000_0011; 4'hC: segments = 7'b100_0110; 4'hD: segments = 7'b010_0001; 4'hE: segments = 7'b000_0110; 4'hF: segments = 7'b000_1110; default: segments = 7'h7f; endcase endmodule
8.273694
module FADDER8 ( sum, carry, A, B, CarryIn ); input [7:0] A, B; input CarryIn; output [7:0] sum; output carry; wire c1, c2, c3, c4, c5, c6, c7; FADDER mod1 ( sum[0], c1, A[0], B[0], CarryIn ); FADDER mod2 ( sum[1], c2, A[1], B[1], c1 ); FADDER mod3 ( sum[2], c3, A[2], B[2], c2 ); FADDER mod4 ( sum[3], c4, A[3], B[3], c3 ); FADDER mod5 ( sum[4], c5, A[4], B[4], c4 ); FADDER mod6 ( sum[5], c6, A[5], B[5], c5 ); FADDER mod7 ( sum[6], c7, A[6], B[6], c6 ); FADDER mod8 ( sum[7], carry, A[7], B[7], c7 ); endmodule
6.809046
module testbench_8BFA; reg [7:0] A, B; reg CarryIn; wire [7:0] Sum; wire Carry; integer i, j; FADDER8 mod ( Sum, Carry, A, B, CarryIn ); initial begin $monitor($time, " A = %b, B = %b, Carry In = %b, Carry = %b, Sum = %b.", A, B, CarryIn, Carry, Sum); #0 A = 8'b00000000; B = 8'b00000000; CarryIn = 1'b0; for (i = 0; i < 256; i = i + 1) begin for (j = 0; j < 256; j = j + 1) begin #3 CarryIn = 1'b0; #3 CarryIn = CarryIn + 1'b1; B = B + 8'b00000001; end A = A + 8'b00000001; end end endmodule
6.894123
module sevensegS ( in, a, b, c, d, e, f, g ); input wire [7:0] in; reg [7:0] inprime; output reg [2:0] a, b, c, d, e, f, g; reg [1:0] hundreds; reg [3:0] tens; always @(in) begin hundreds = in / (8'b01100100); inprime = in - hundreds * (8'b01100100); case (hundreds) 2'b00: {a[2], b[2], c[2], d[2], e[2], f[2], g[2]} = 7'b1111110; 2'b01: {a[2], b[2], c[2], d[2], e[2], f[2], g[2]} = 7'b0110000; 2'b10: {a[2], b[2], c[2], d[2], e[2], f[2], g[2]} = 7'b1101101; endcase tens = inprime / (4'b1010); inprime = inprime - tens * (4'b1010); case (tens) 4'b0000: {a[1], b[1], c[1], d[1], e[1], f[1], g[1]} = 7'b1111110; 4'b0001: {a[1], b[1], c[1], d[1], e[1], f[1], g[1]} = 7'b0110000; 4'b0010: {a[1], b[1], c[1], d[1], e[1], f[1], g[1]} = 7'b1101101; 4'b0011: {a[1], b[1], c[1], d[1], e[1], f[1], g[1]} = 7'b1111001; 4'b0100: {a[1], b[1], c[1], d[1], e[1], f[1], g[1]} = 7'b0110011; 4'b0101: {a[1], b[1], c[1], d[1], e[1], f[1], g[1]} = 7'b1011011; 4'b0110: {a[1], b[1], c[1], d[1], e[1], f[1], g[1]} = 7'b1011111; 4'b0111: {a[1], b[1], c[1], d[1], e[1], f[1], g[1]} = 7'b1110000; 4'b1000: {a[1], b[1], c[1], d[1], e[1], f[1], g[1]} = 7'b1111111; 4'b1001: {a[1], b[1], c[1], d[1], e[1], f[1], g[1]} = 7'b1110011; endcase case (inprime) 8'b00000000: {a[0], b[0], c[0], d[0], e[0], f[0], g[0]} = 7'b1111110; 8'b00000001: {a[0], b[0], c[0], d[0], e[0], f[0], g[0]} = 7'b0110000; 8'b00000010: {a[0], b[0], c[0], d[0], e[0], f[0], g[0]} = 7'b1101101; 8'b00000011: {a[0], b[0], c[0], d[0], e[0], f[0], g[0]} = 7'b1111001; 8'b00000100: {a[0], b[0], c[0], d[0], e[0], f[0], g[0]} = 7'b0110011; 8'b00000101: {a[0], b[0], c[0], d[0], e[0], f[0], g[0]} = 7'b1011011; 8'b00000110: {a[0], b[0], c[0], d[0], e[0], f[0], g[0]} = 7'b1011111; 8'b00000111: {a[0], b[0], c[0], d[0], e[0], f[0], g[0]} = 7'b1110000; 8'b00001000: {a[0], b[0], c[0], d[0], e[0], f[0], g[0]} = 7'b1111111; 8'b00001001: {a[0], b[0], c[0], d[0], e[0], f[0], g[0]} = 7'b1110011; endcase end endmodule
7.311417
module parity ( input reg [7:0] bitt, output y ); assign y = ~^bitt; endmodule
8.590572
module add_1bit ( input a, input b, input cin, output s, output cout ); wire s; wire cout; assign s = (a ^ b) ^ cin; assign cout = (a & b) | (b & cin) | (cin & a); endmodule
7.224096
module add_8bit ( input [7:0] a, input [7:0] b, input c, output [7:0] s, output [7:0] c1 ); add_1bit full0 ( a[0], b[0], c, s[0], c1[0] ); add_1bit full1 ( a[1], b[1], c1[0], s[1], c1[1] ); add_1bit full2 ( a[2], b[2], c1[1], s[2], c1[2] ); add_1bit full3 ( a[3], b[3], c1[2], s[3], c1[3] ); add_1bit full4 ( a[4], b[4], c1[3], s[4], c1[4] ); add_1bit full5 ( a[5], b[5], c1[4], s[5], c1[5] ); add_1bit full6 ( a[6], b[6], c1[5], s[6], c1[6] ); add_1bit full7 ( a[7], b[7], c1[6], s[7], c1[7] ); endmodule
6.573601
module top_module (); reg [7:0] A, B; reg C; wire [7:0] S, C1; add_8bit _test ( A, B, C, S, C1 ); initial begin $display("a b c_in s c_out"); A = 8'b00000001; B = 8'b00000010; C = 1'b0; #1 $display("%b %b %b %b %b", A, B, C, S, C1); A = 8'b00001010; B = 8'b10000010; C = 1'b0; #1 $display("%b %b %b %b %b", A, B, C, S, C1); A = 8'b00010001; B = 8'b00100010; C = 1'b1; #1 $display("%b %b %b %b %b", A, B, C, S, C1); A = 8'b00100001; B = 8'b01000010; C = 1'b1; #1 $display("%b %b %b %b %b", A, B, C, S, C1); A = 8'b10011001; B = 8'b01100010; C = 1'b0; #1 $display("%b %b %b %b %b", A, B, C, S, C1); A = 8'b00000001; B = 8'b11111110; C = 1'b0; #1 $display("%b %b %b %b %b", A, B, C, S, C1); A = 8'b00000000; B = 8'b11111111; C = 1'b1; #1 $display("%b %b %b %b %b", A, B, C, S, C1); A = 8'b11011001; B = 8'b00001111; C = 1'b0; #1 $display("%b %b %b %b %b", A, B, C, S, C1); A = 8'b01001001; B = 8'b11011010; C = 1'b1; #1 $display("%b %b %b %b %b", A, B, C, S, C1); A = 8'b01010101; B = 8'b10101010; C = 1'b0; #1 $display("%b %b %b %b %b", A, B, C, S, C1); end endmodule
6.627149
module _8bit_adder_reg ( input sys_clk, input sys_rst_n, input [7:0] in1, input [7:0] in2, input cn1, output reg enable, output [8:0] out ); reg [7:0] cnt; wire [7:0] a; wire [7:0] b; assign a = cnt & in1; assign b = cnt & in2; wire [7:0] connect; always @(posedge sys_clk, negedge sys_rst_n) begin if (!sys_rst_n) begin cnt <= 8'b0000_0001; enable <= 0; end else if (cnt < 8'b1000_0000) begin cnt <= {cnt[6:0], cnt[7]}; end else if (cnt == 8'b1000_0000) enable <= 1; else begin cnt <= cnt; enable <= enable; end end adder_1bit adder_0 ( .i1(a[0]), .i2(b[0]), .cn(cn1), .result(out[0]), .cn_out(connect[0]), ); adder_1bit adder_1 ( .i1(a[1]), .i2(b[1]), .cn(connect[0]), .result(out[1]), .cn_out(connect[1]), ); adder_1bit adder_2 ( .i1(a[2]), .i2(b[2]), .cn(connect[1]), .result(out[2]), .cn_out(connect[2]), ); adder_1bit adder_3 ( .i1(a[3]), .i2(b[3]), .cn(connect[2]), .result(out[3]), .cn_out(connect[3]), ); adder_1bit adder_4 ( .i1(a[4]), .i2(b[4]), .cn(connect[3]), .result(out[4]), .cn_out(connect[4]), ); adder_1bit adder_5 ( .i1(a[5]), .i2(b[5]), .cn(connect[4]), .result(out[5]), .cn_out(connect[5]), ); endmodule
6.988194
module or2 ( input wire x, y, output wire z ); assign z = x | y; endmodule
8.541431
module xor2 ( input wire x, y, output wire z ); assign z = x ^ y; endmodule
8.782532
module half_adder ( input wire x, y, output wire c1, s ); assign c1 = x & y; assign s = x ^ y; endmodule
6.966406
module top_module (); reg [7:0] a, b; wire [7:0] l, g, e; comp_8bit full ( a[7:0], b[7:0], l[7:0], g[7:0], e[7:0] ); initial begin a = 87; b = 8'b01110100; #5; a = 8'b11111111; b = 8'b11111111; #5; a = 125; b = 32; #5; a = 8'b01010101; b = 8'b10101010; #5; a = 66; b = 66; #5; a = 8'haf; b = 8'hba; #5; a = 0; b = 8'b00000000; #5; a = 8'b00001010; b = 8'b00001010; #5; a = 8'b00000000; b = 8'b00000000; #5; a = 0; b = 8'hfa; #5; end endmodule
6.627149
module f ( input [5:0] key, input [3:0] msg, output [3:0] fout_per ); wire [5:0] emsg; wire [3:0] fout_per; wire [5:0] emsg_enc; wire [3:0] fout; assign emsg[5] = msg[3]; assign emsg[4] = msg[2]; assign emsg[3] = msg[2]; assign emsg[2] = msg[1]; assign emsg[1] = msg[1]; assign emsg[0] = msg[0]; assign emsg_enc = key ^ emsg; assign fout = SBOX(emsg_enc); assign fout_per[3] = fout[2]; assign fout_per[2] = fout[1]; assign fout_per[1] = fout[3]; assign fout_per[0] = fout[0]; function [3:0] SBOX(input [5:0] B); reg [1:0] i; reg [3:0] j; reg [3:0] S1[3:0][15:0]; begin S1[0][0] = 14; S1[0][1] = 4; S1[0][2] = 13; S1[0][3] = 1; S1[0][4] = 2; S1[0][5] = 15; S1[0][6] = 11; S1[0][7] = 8; S1[0][8] = 3; S1[0][9] = 10; S1[0][10] = 6; S1[0][11] = 12; S1[0][12] = 5; S1[0][13] = 9; S1[0][14] = 0; S1[0][15] = 7; S1[1][0] = 0; S1[1][1] = 15; S1[1][2] = 7; S1[1][3] = 4; S1[1][4] = 14; S1[1][5] = 2; S1[1][6] = 13; S1[1][7] = 1; S1[1][8] = 10; S1[1][9] = 6; S1[1][10] = 12; S1[1][11] = 11; S1[1][12] = 9; S1[1][13] = 5; S1[1][14] = 3; S1[1][15] = 8; S1[2][0] = 4; S1[2][1] = 1; S1[2][2] = 14; S1[2][3] = 8; S1[2][4] = 13; S1[2][5] = 6; S1[2][6] = 2; S1[2][7] = 11; S1[2][8] = 15; S1[2][9] = 12; S1[2][10] = 9; S1[2][11] = 7; S1[2][12] = 3; S1[2][13] = 10; S1[2][14] = 5; S1[2][15] = 0; S1[3][0] = 15; S1[3][1] = 12; S1[3][2] = 8; S1[3][3] = 2; S1[3][4] = 4; S1[3][5] = 9; S1[3][6] = 1; S1[3][7] = 7; S1[3][8] = 5; S1[3][9] = 11; S1[3][10] = 3; S1[3][11] = 14; S1[3][12] = 10; S1[3][13] = 0; S1[3][14] = 6; S1[3][15] = 13; i[1:0] = {B[5], B[0]}; j[3:0] = B[4:1]; SBOX = S1[i][j]; end endfunction endmodule
6.572024
module gf2m #( parameter DIGITAL = 8, parameter DATA_WIDTH = 163 ) ( input wire rst, input wire clk, input wire start, input wire [DATA_WIDTH - 1 : 0] a, input wire [DATA_WIDTH - 1 : 0] g, input wire [DIGITAL - 1:0] b, output reg [DATA_WIDTH - 1 : 0] t_i_j, output reg done ); parameter ITERATION_NUMBER = DATA_WIDTH / DIGITAL; parameter IDLE = 1'b0; parameter CAL = 1'b1; reg state; reg [12:0] counter; wire [DATA_WIDTH - 1 : 0] wire_t_i_j; serial serial_8_bit ( .b(b), .a(a), .g(g), .t_i1_j1(t_i_j), .t_i_j(wire_t_i_j) ); always @(posedge clk or negedge rst) begin : proc_counter if (~rst) begin counter <= 0; end else begin case (state) IDLE: begin counter <= 6'd0; end CAL: begin if (counter < ITERATION_NUMBER) counter <= counter + 1; else counter <= 6'd0; end default: /* default */; endcase end end always @(posedge clk or negedge rst) begin : proc_t_i_j if (~rst) begin t_i_j <= 0; end else begin case (state) IDLE: t_i_j <= 0; CAL: t_i_j <= wire_t_i_j; default: t_i_j <= 0; endcase end end always @(posedge clk or negedge rst) begin : proc_done if (~rst) begin done <= 0; end else begin case (state) IDLE: done <= 0; CAL: begin if (counter < ITERATION_NUMBER) done <= 0; else done <= 1'b1; end default: done <= 0; endcase end end always @(posedge clk or negedge rst) begin : proc_state if (~rst) begin state <= IDLE; end else begin case (state) IDLE: begin : IDLE_STATE if (start) state <= CAL; else state <= state; end CAL: begin : CAL_STATE if (counter < ITERATION_NUMBER) state <= CAL; else state <= IDLE; end default: state <= IDLE; endcase end end endmodule
7.196913
module mydff ( d, q, qb, clk ); input d, clk; output q, qb; reg q, qb; initial begin q = 1'b0; qb = 1'b1; end always @(posedge clk) begin q = d; qb = ~d; end endmodule
7.098698
module dff_tb; reg d; reg clk; integer i; wire q, qb; mydff out ( d, q, qb, clk ); initial begin $dumpfile("dumpu.vcd"); $dumpvars(0, dff_tb); $display("T\tq\tqb"); $monitor("%b\t%b\t%b", d, q, qb); d = 0; #10; d = 1; #10; $finish; end initial begin clk = 0; for (i = 0; i <= 30; i++) #10 clk = ~clk; $finish; end endmodule
7.069627
module fpga_gf2m #( parameter DIGITAL = 8, parameter DATA_WIDTH = 163 ) ( input clk, // Clock input rst, // Asynchronous reset active low input wire start, input wire [DATA_WIDTH - 1 : 0] a, input wire [DATA_WIDTH - 1 : 0] g, input wire [BWIDTH - 1:0] b, output reg [DATA_WIDTH - 1 : 0] t_i_j, output reg done ); parameter ITERATION_NUMBER = DATA_WIDTH / DIGITAL; parameter BWIDTH = (ITERATION_NUMBER + 1) * DIGITAL; parameter IDLE = 2'b00; parameter CAL = 2'b01; parameter DONE = 2'b10; reg state; reg [12:0] counter; reg [DATA_WIDTH - 1 : 0] reg_a; reg [DATA_WIDTH - 1 : 0] reg_g; reg [BWIDTH - 1:0] reg_b; wire [DIGITAL - 1:0] b_in; wire [DATA_WIDTH - 1 : 0] out_t_i_j; wire wire_done; gf2m fpgainst ( .rst(rst), .clk(clk), .start(start), .a(reg_a), .g(reg_g), .b(b_in), .t_i_j(out_t_i_j), .done(wire_done) ); // done always @(posedge clk or negedge rst) begin : proc_done if (~rst) begin done <= 0; end else begin case (wire_done) 1'b0: done <= done; 1'b1: done <= 1'b1; default: done <= done; endcase end end always @(posedge clk or negedge rst) begin : proc_t_i_j if (~rst) begin t_i_j <= 0; end else begin case (wire_done) 1'b0: t_i_j <= t_i_j; 1'b1: t_i_j <= out_t_i_j; default: t_i_j <= t_i_j; endcase end end // counter always @(posedge clk or negedge rst) begin : proc_counter if (~rst) begin counter <= 0; end else begin case (state) IDLE: begin counter <= 12'd0; end CAL: begin if (counter < ITERATION_NUMBER) counter <= counter + 1; else counter <= 12'd0; end default: counter <= 12'd0; endcase end end // reg_b_in assign b_in = reg_b[(ITERATION_NUMBER+1)*DIGITAL-1 : (ITERATION_NUMBER)*DIGITAL]; // reg_a always @(posedge clk or negedge rst) begin : reg_a34 if (~rst) begin reg_a <= 0; end else begin case (state) IDLE: begin if (start) reg_a <= a; else reg_a <= 0; end default: reg_a <= reg_a; endcase end end // reg_b always @(posedge clk or negedge rst) begin : reg_b24 if (~rst) begin reg_b <= 0; end else begin case (state) IDLE: begin if (start) reg_b <= b; else reg_b <= 0; end CAL: begin reg_b = reg_b <<< DIGITAL; end default: reg_b <= reg_b; endcase end end // reg_g always @(posedge clk or negedge rst) begin : proc_reg_g32 if (~rst) begin reg_g <= 0; end else begin case (state) IDLE: begin if (start) reg_g <= g; else reg_g <= 0; end default: reg_g <= reg_g; endcase end end always @(posedge clk or negedge rst) begin : proc_state_machine if (~rst) begin state <= IDLE; end else begin case (state) IDLE: begin if (start) begin state <= CAL; end else begin state <= state; end end CAL: begin if (counter < ITERATION_NUMBER) state <= CAL; else state <= DONE; end DONE: begin state <= DONE; end default: state <= IDLE; endcase end end endmodule
6.91314
module mux8to1 ( Q, S, i1, i2, i3, i4, i5, i6, i7, i8 ); input i1, i2, i3, i4, i5, i6, i7, i8; input [2:0] S; output Q; wire sel1, sel2, sel3, sel4, sel5, sel6, sel7, sel8; decoder3to8 decoder1 ( S, sel1, sel2, sel3, sel4, sel5, sel6, sel7, sel8 ); wire sel1_and_i1, sel2_and_i2, sel3_and_i3, sel4_and_i4, sel5_and_i5, sel6_and_i6, sel7_and_i7, sel8_and_i8; and and1 (sel1_and_i1, i1, sel1); and and2 (sel2_and_i2, i2, sel2); and and3 (sel3_and_i3, i3, sel3); and and4 (sel4_and_i4, i4, sel4); and and5 (sel5_and_i5, i5, sel5); and and6 (sel6_and_i6, i6, sel6); and and7 (sel7_and_i7, i7, sel7); and and8 (sel8_and_i8, i8, sel8); or or1 ( Q, sel1_and_i1, sel2_and_i2, sel3_and_i3, sel4_and_i4, sel5_and_i5, sel6_and_i6, sel7_and_i7, sel8_and_i8 ); endmodule
7.465042
module mux8to1_8bit ( Q, S, i1, i2, i3, i4, i5, i6, i7, i8 ); input [7:0] i1, i2, i3, i4, i5, i6, i7, i8; input [2:0] S; output [7:0] Q; mux8to1 mux0 ( Q[0], S, i1[0], i2[0], i3[0], i4[0], i5[0], i6[0], i7[0], i8[0] ); mux8to1 mux1 ( Q[1], S, i1[1], i2[1], i3[1], i4[1], i5[1], i6[1], i7[1], i8[1] ); mux8to1 mux2 ( Q[2], S, i1[2], i2[2], i3[2], i4[2], i5[2], i6[2], i7[2], i8[2] ); mux8to1 mux3 ( Q[3], S, i1[3], i2[3], i3[3], i4[3], i5[3], i6[3], i7[3], i8[3] ); mux8to1 mux4 ( Q[4], S, i1[4], i2[4], i3[4], i4[4], i5[4], i6[4], i7[4], i8[4] ); mux8to1 mux5 ( Q[5], S, i1[5], i2[5], i3[5], i4[5], i5[5], i6[5], i7[5], i8[5] ); mux8to1 mux6 ( Q[6], S, i1[6], i2[6], i3[6], i4[6], i5[6], i6[6], i7[6], i8[6] ); mux8to1 mux7 ( Q[7], S, i1[7], i2[7], i3[7], i4[7], i5[7], i6[7], i7[7], i8[7] ); endmodule
6.558723
module mux(in, sel, out); input [7:0] in; input [2:0]sel; output out; mux endmodule
6.81271
module 8x1(i,s,y); input [7:0] i; input [3:0] s; output y; assign y=i[s]; endmodule
6.655004
module m8X3_encoder ( D, x, y, z ); //8x3 encoder using RTL input wire [7:0] D; output wire x, y, z; assign x = D[4] || D[5] || D[6] || D[7]; assign y = D[2] || D[3] || D[6] || D[7]; assign z = D[1] || D[3] || D[5] || D[7]; endmodule
6.550095