code
stringlengths 35
6.69k
| score
float64 6.5
11.5
|
|---|---|
module tb_Pip20CLA ();
reg clk = 0;
reg [19:0] a, b;
reg cin;
wire [19:0] s;
wire cout;
Pip20CLA Pip20CLA0 (
a,
b,
cin,
clk,
s,
cout
);
always #5 clk = ~clk;
initial begin
a = 20'b0000_0110_1111_0111_0111;
b = 20'b0000_0111_0001_0111_1000;
cin = 0;
#150 a = 20'b0000_0011_0000_0000_0000;
b = 20'b1111_0000_0000_0000_0000;
cin = 0;
#150 a = 20'b0000_0000_1111_0111_0111;
b = 20'b0001_0110_0000_0000_1000;
cin = 0;
#150 a = 20'b0000_0000_0000_0000_0001;
b = 20'b0000_0000_0110_0000_0011;
cin = 1;
#150 a = 20'b0000_0000_0000_1101_0111;
b = 20'b0000_0000_0110_0111_1000;
cin = 1;
end
endmodule
| 6.647245
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = (((~opcode) == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = (('0 == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = (('1 == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == (~'b010001001)) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == '0) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == '1) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode != 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module used to extend the width of the pulse
//author:WangFW
//date:2020-5-29
module extend(clk,rst_n,din,dout);
input clk;
input rst_n;
input din;
output reg dout;
reg d1;
reg d2;
reg d3;
reg d4;
always @(posedge clk or negedge rst_n)
begin
if(!rst_n)
begin
d1<=1'b0;
d2<=1'b0;
d3<=1'b0;
d4<=1'b0;
dout<=1'b0;
end
else
begin
d1<=din;
d2<=d1;
d3<=d2;
d4<=d3;
dout<=d1 || d2 || d3 || d4;
end
end
endmodule
| 6.976744
|
module top_module (
input clk,
input reset, // Synchronous reset
input in,
output disc,
output flag,
output err
);
parameter NONE = 0, S1 = 1, S2 = 2, S3 = 3, S4 = 4;
parameter S5 = 5, S6 = 6, DISCARD = 7, FLAG = 8, ERROR = 9;
reg [3:0] cstate, nstate;
always @(posedge clk) begin
if (reset) begin
cstate <= NONE;
end else begin
cstate <= nstate;
end
end
always @(*) begin
case (cstate)
NONE : nstate = in ? S1 : NONE ;
S1 : nstate = in ? S2 : NONE ;
S2 : nstate = in ? S3 : NONE ;
S3 : nstate = in ? S4 : NONE ;
S4 : nstate = in ? S5 : NONE ;
S5 : nstate = in ? S6 : DISCARD ;
S6 : nstate = in ? ERROR : FLAG ;
DISCARD : nstate = in ? S1 : NONE ;
FLAG : nstate = in ? S1 : NONE ;
ERROR : nstate = in ? ERROR : NONE ;
endcase
end
assign disc = (cstate == DISCARD);
assign flag = (cstate == FLAG);
assign err = (cstate == ERROR);
endmodule
| 7.203305
|
module top_module (
input a,
input b,
input c,
input d,
output out1,
output out2
);
mod_a(
out1, out2, a, b, c, d
);
endmodule
| 7.203305
|
module part_2147 (
A0,
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
CE_N,
WE_N,
DI,
DO
);
input A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11;
input CE_N, WE_N, DI;
output DO;
reg memory[0:4096];
initial begin
memory[0] <= 0;
end
assign #(`RAM_DELAY) DO = CE_N ?
1'bz : memory[ {A11,A10,A9,A8,A7,A6,A5,A4,A3,A2,A1,A0} ];
//assign DO = 1'bz;
always @(CE_N or WE_N)
if (!CE_N && !WE_N)
memory[{A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0}] = DI;
// always @(WE_N or CE_N)
// if (!WE_N && !CE_N)
// $display("error in part_2147 RAM: OE and WE both active");
endmodule
| 7.37652
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && ((~mod) == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && ('0 == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && ('1 == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == (~3)));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == '0));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == '1));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod != 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module drink_machine (
clk,
rst_n,
coin,
drink,
back
);
input clk;
input rst_n;
input [1:0] coin;
output reg drink;
output reg [1:0] back;
parameter init = 3'b000, s1 = 3'b001, s2 = 3'b010, s3 = 3'b011, s4 = 3'b100;
parameter coin_5 = 2'b01, coin_10 = 2'b10;
reg [2:0] state;
reg [2:0] next_state;
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
state <= init;
next_state <= init;
end else begin
state <= next_state;
end
end
always @(coin) begin
case (state)
init: begin
if (coin == coin_10) next_state <= s1;
else if (coin == coin_5) next_state <= s2;
else next_state <= init;
end
s1: begin
next_state <= init;
end
s2: begin
if (coin == coin_5) next_state <= s3;
else if (coin == coin_10) next_state <= s4;
else next_state <= s2;
end
s3: begin
next_state <= init;
end
s4: begin
next_state <= init;
end
default: next_state <= init;
endcase
end
always @(state) begin
case (state)
init: begin
drink <= 1'b0;
back <= 2'b00;
end
s1: begin
drink <= 1'b1;
back <= 2'b00;
end
s2: begin
drink <= 1'b0;
back <= 2'b00;
end
s3: begin
drink <= 1'b1;
back <= 2'b00;
end
s4: begin
drink <= 1'b1;
back <= coin_5;
end
default: begin
drink <= 1'b0;
back <= 2'b00;
end
endcase
end
endmodule
| 6.79605
|
module drink_machine_tb ();
reg clk;
reg rst_n;
//reg load;
reg [1:0] coin;
wire drink;
wire [1:0] back;
initial begin
clk = 0;
rst_n = 1;
coin = 2'b00;
#10 rst_n = 0;
#10 rst_n = 1;
//init---s2---s3
#5 coin = 2'b01;
#5 coin = 2'b00;
#5 coin = 2'b01;
#5 coin = 2'b00;
//init---s2--s4
#5 coin = 2'b01;
#5 coin = 2'b00;
#5 coin = 2'b10;
#5 coin = 2'b00;
//init---s1
#5 coin = 2'b10;
#5 coin = 2'b00;
end
always #2 clk <= ~clk;
drink_machine dut (
.clk (clk),
.rst_n(rst_n),
.coin (coin),
.drink(drink),
.back (back)
);
endmodule
| 6.79605
|
module top_module (
input clk,
input aresetn, // Asynchronous active-low reset
input x,
output z
);
parameter S0 = 0, S1 = 1, S2 = 2;
reg [1:0] cstate, nstate;
always @(posedge clk or negedge aresetn) begin
if (!aresetn) begin
cstate <= S0;
end else begin
cstate <= nstate;
end
end
always @(*) begin
case (cstate)
S0: nstate = x ? S1 : S0;
S1: nstate = x ? S1 : S2;
S2: nstate = x ? S1 : S0;
endcase
end
assign z = (cstate == S2) && x;
endmodule
| 7.203305
|
module top_module (
input a,
input b,
input c,
input d,
output out1,
output out2
);
mod_a(
.out1(out1), .out2(out2), .in1(a), .in2(b), .in3(c), .in4(d)
);
endmodule
| 7.203305
|
module lpm_constant (
result // Value specified by the argument to LPM_CVALUE. (Required)
);
// GLOBAL PARAMETER DECLARATION
parameter lpm_width = 1; // Width of the result[] port. (Required)
parameter lpm_cvalue = 0; // Constant value to be driven out on the
// result[] port. (Required)
parameter lpm_strength = "UNUSED";
parameter lpm_type = "lpm_constant";
parameter lpm_hint = "UNUSED";
// OUTPUT PORT DECLARATION
output [lpm_width-1:0] result;
// INTERNAL REGISTERS DECLARATION
reg [32:0] int_value;
// INITIAL CONSTRUCT BLOCK
initial begin
if (lpm_width <= 0) begin
$display("Value of lpm_width parameter must be greater than 0(ERROR)");
$display("Time: %0t Instance: %m", $time);
$finish;
end
int_value = lpm_cvalue;
end
// CONTINOUS ASSIGNMENT
assign result = int_value[lpm_width-1:0];
endmodule
| 6.780056
|
module lpm_and (
data, // Data input to the AND gate. (Required)
result // Result of the AND operators. (Required)
);
// GLOBAL PARAMETER DECLARATION
// Width of the data[][] and result[] ports. Number of AND gates. (Required)
parameter lpm_width = 1;
// Number of inputs to each AND gate. Number of input buses. (Required)
parameter lpm_size = 1;
parameter lpm_type = "lpm_and";
parameter lpm_hint = "UNUSED";
// INPUT PORT DECLARATION
input [(lpm_size * lpm_width)-1:0] data;
// OUTPUT PORT DECLARATION
output [lpm_width-1:0] result;
// INTERNAL REGISTER/SIGNAL DECLARATION
reg [lpm_width-1:0] result_tmp;
// LOCAL INTEGER DECLARATION
integer i;
integer j;
integer k;
// INITIAL CONSTRUCT BLOCK
initial begin
if (lpm_width <= 0) begin
$display("Value of lpm_width parameter must be greater than 0(ERROR)");
$display("Time: %0t Instance: %m", $time);
$finish;
end
if (lpm_size <= 0) begin
$display("Value of lpm_size parameter must be greater than 0(ERROR)");
$display("Time: %0t Instance: %m", $time);
$finish;
end
end
// ALWAYS CONSTRUCT BLOCK
always @(data) begin
for (i = 0; i < lpm_width; i = i + 1) begin
result_tmp[i] = 1'b1;
for (j = 0; j < lpm_size; j = j + 1) begin
k = (j * lpm_width) + i;
result_tmp[i] = result_tmp[i] & data[k];
end
end
end
// CONTINOUS ASSIGNMENT
assign result = result_tmp;
endmodule
| 7.013581
|
module lpm_or (
data, // Data input to the OR gates. (Required)
result // Result of OR operators. (Required)
);
// GLOBAL PARAMETER DECLARATION
// Width of the data[] and result[] ports. Number of OR gates. (Required)
parameter lpm_width = 1;
// Number of inputs to each OR gate. Number of input buses. (Required)
parameter lpm_size = 1;
parameter lpm_type = "lpm_or";
parameter lpm_hint = "UNUSED";
// INPUT PORT DECLARATION
input [(lpm_size * lpm_width)-1:0] data;
// OUTPUT PORT DECLARATION
output [lpm_width-1:0] result;
// INTERNAL REGISTER/SIGNAL DECLARATION
reg [lpm_width-1:0] result_tmp;
// LOCAL INTEGER DECLARATION
integer i;
integer j;
integer k;
// INITIAL CONSTRUCT BLOCK
initial begin
if (lpm_width <= 0) begin
$display("Value of lpm_width parameter must be greater than 0 (ERROR)");
$display("Time: %0t Instance: %m", $time);
$finish;
end
if (lpm_size <= 0) begin
$display("Value of lpm_size parameter must be greater than 0 (ERROR)");
$display("Time: %0t Instance: %m", $time);
$finish;
end
end
// ALWAYS CONSTRUCT BLOCK
always @(data) begin
for (i = 0; i < lpm_width; i = i + 1) begin
result_tmp[i] = 1'b0;
for (j = 0; j < lpm_size; j = j + 1) begin
k = (j * lpm_width) + i;
result_tmp[i] = result_tmp[i] | data[k];
end
end
end
// CONTINOUS ASSIGNMENT
assign result = result_tmp;
endmodule
| 6.857827
|
module lpm_bustri (
tridata, // Bidirectional bus signal. (Required)
data, // Data input to the tridata[] bus. (Required)
enabletr, // If high, enables tridata[] onto the result bus.
enabledt, // If high, enables data onto the tridata[] bus.
result // Output from the tridata[] bus.
);
// GLOBAL PARAMETER DECLARATION
parameter lpm_width = 1;
parameter lpm_type = "lpm_bustri";
parameter lpm_hint = "UNUSED";
// INPUT PORT DECLARATION
input [lpm_width-1:0] data;
input enabletr;
input enabledt;
// OUTPUT PORT DECLARATION
output [lpm_width-1:0] result;
// INPUT/OUTPUT PORT DECLARATION
inout [lpm_width-1:0] tridata;
// INTERNAL REGISTERS DECLARATION
reg [lpm_width-1:0] result;
// INTERNAL TRI DECLARATION
tri1 enabletr;
tri1 enabledt;
wire i_enabledt;
wire i_enabletr;
buf (i_enabledt, enabledt);
buf (i_enabletr, enabletr);
// INITIAL CONSTRUCT BLOCK
initial begin
if (lpm_width <= 0) begin
$display("Value of lpm_width parameter must be greater than 0(ERROR)");
$display("Time: %0t Instance: %m", $time);
$finish;
end
end
// ALWAYS CONSTRUCT BLOCK
always @(data or tridata or i_enabletr or i_enabledt) begin
if ((i_enabledt == 1'b0) && (i_enabletr == 1'b1)) begin
result = tridata;
end else if ((i_enabledt == 1'b1) && (i_enabletr == 1'b1)) begin
result = data;
end else begin
result = {lpm_width{1'bz}};
end
end
// CONTINOUS ASSIGNMENT
assign tridata = (i_enabledt == 1) ? data : {lpm_width{1'bz}};
endmodule
| 8.412317
|
module lpm_decode (
data, // Data input. Treated as an unsigned binary encoded number. (Required)
enable, // Enable. All outputs low when not active.
clock, // Clock for pipelined usage.
aclr, // Asynchronous clear for pipelined usage.
clken, // Clock enable for pipelined usage.
eq // Decoded output. (Required)
);
// GLOBAL PARAMETER DECLARATION
parameter lpm_width = 1; // Width of the data[] port, or the
// input value to be decoded. (Required)
parameter lpm_decodes = 1 << lpm_width; // Number of explicit decoder outputs. (Required)
parameter lpm_pipeline = 0; // Number of Clock cycles of latency
parameter lpm_type = "lpm_decode";
parameter lpm_hint = "UNUSED";
// INPUT PORT DECLARATION
input [lpm_width-1:0] data;
input enable;
input clock;
input aclr;
input clken;
// OUTPUT PORT DECLARATION
output [lpm_decodes-1:0] eq;
// INTERNAL REGISTER/SIGNAL DECLARATION
reg [lpm_decodes-1:0] eq_pipe [(lpm_pipeline+1):0];
reg [lpm_decodes-1:0] tmp_eq;
// LOCAL INTEGER DECLARATION
integer i;
integer pipe_ptr;
// INTERNAL TRI DECLARATION
tri1 enable;
tri0 clock;
tri0 aclr;
tri1 clken;
wire i_clock;
wire i_clken;
wire i_aclr;
wire i_enable;
buf (i_clock, clock);
buf (i_clken, clken);
buf (i_aclr, aclr);
buf (i_enable, enable);
// INITIAL CONSTRUCT BLOCK
initial begin
if (lpm_width <= 0) begin
$display("Value of lpm_width parameter must be greater than 0 (ERROR)");
$display("Time: %0t Instance: %m", $time);
$finish;
end
if (lpm_decodes <= 0) begin
$display("Value of lpm_decodes parameter must be greater than 0 (ERROR)");
$display("Time: %0t Instance: %m", $time);
$finish;
end
if (lpm_decodes > (1 << lpm_width)) begin
$display("Value of lpm_decodes parameter must be less or equal to 2^lpm_width (ERROR)");
$display("Time: %0t Instance: %m", $time);
$finish;
end
if (lpm_pipeline < 0) begin
$display("Value of lpm_pipeline parameter must be greater or equal to 0 (ERROR)");
$display("Time: %0t Instance: %m", $time);
$finish;
end
pipe_ptr = 0;
end
// ALWAYS CONSTRUCT BLOCK
always @(data or i_enable) begin
tmp_eq = {lpm_decodes{1'b0}};
if (i_enable) tmp_eq[data] = 1'b1;
end
always @(posedge i_clock or posedge i_aclr) begin
if (i_aclr) begin
for (i = 0; i <= lpm_pipeline; i = i + 1) eq_pipe[i] <= {lpm_decodes{1'b0}};
pipe_ptr <= 0;
end else if (clken == 1'b1) begin
eq_pipe[pipe_ptr] <= tmp_eq;
if (lpm_pipeline > 1) pipe_ptr <= (pipe_ptr + 1) % lpm_pipeline;
end
end
assign eq = (lpm_pipeline > 0) ? eq_pipe[pipe_ptr] : tmp_eq;
endmodule
| 7.18043
|
module lpm_latch (
data, // Data input to the latch.
gate, // Latch enable input. High = flow-through, low = latch. (Required)
aclr, // Asynchronous clear input.
aset, // Asynchronous set input.
aconst,
q // Data output from the latch.
);
// GLOBAL PARAMETER DECLARATION
parameter lpm_width = 1; // Width of the data[] and q[] ports. (Required)
parameter lpm_avalue = "UNUSED"; // Constant value that is loaded when aset is high.
parameter lpm_pvalue = "UNUSED";
parameter lpm_type = "lpm_latch";
parameter lpm_hint = "UNUSED";
// INPUT PORT DECLARATION
input [lpm_width-1:0] data;
input gate;
input aclr;
input aset;
input aconst;
// OUTPUT PORT DECLARATION
output [lpm_width-1:0] q;
// INTERNAL REGISTER/SIGNAL DECLARATION
reg [lpm_width-1:0] q;
reg [lpm_width-1:0] avalue;
reg [lpm_width-1:0] pvalue;
// INTERNAL TRI DECLARATION
tri0 [lpm_width-1:0] data;
tri0 aclr;
tri0 aset;
tri0 aconst;
wire i_aclr;
wire i_aset;
buf (i_aclr, aclr);
buf (i_aset, aset);
// TASK DECLARATION
task string_to_reg;
input [8*40:1] string_value;
output [lpm_width-1:0] value;
reg [8*40:1] reg_s;
reg [8:1] digit;
reg [8:1] tmp;
reg [lpm_width-1:0] ivalue;
integer m;
begin
ivalue = {lpm_width{1'b0}};
reg_s = string_value;
for (m = 1; m <= 40; m = m + 1) begin
tmp = reg_s[320:313];
digit = tmp & 8'b00001111;
reg_s = reg_s << 8;
ivalue = ivalue * 10 + digit;
end
value = ivalue;
end
endtask
// INITIAL CONSTRUCT BLOCK
initial begin
if (lpm_width <= 0) begin
$display("Value of lpm_width parameter must be greater than 0 (ERROR)");
$display("Time: %0t Instance: %m", $time);
$finish;
end
if (lpm_pvalue != "UNUSED") begin
string_to_reg(lpm_pvalue, pvalue);
q = pvalue;
end
if (lpm_avalue == "UNUSED") avalue = {lpm_width{1'b1}};
else string_to_reg(lpm_avalue, avalue);
end
// ALWAYS CONSTRUCT BLOCK
always @(data or gate or i_aclr or i_aset or avalue) begin
if (i_aclr) q <= {lpm_width{1'b0}};
else if (i_aset) q <= avalue;
else if (gate) q <= data;
end
endmodule
| 7.559436
|
module lpm_fifo_dc_dffpipe (
d,
clock,
aclr,
q
);
// GLOBAL PARAMETER DECLARATION
parameter lpm_delay = 1;
parameter lpm_width = 64;
// INPUT PORT DECLARATION
input [lpm_width-1:0] d;
input clock;
input aclr;
// OUTPUT PORT DECLARATION
output [lpm_width-1:0] q;
// INTERNAL REGISTERS DECLARATION
reg [lpm_width-1:0] dffpipe[lpm_delay:0];
reg [lpm_width-1:0] q;
// LOCAL INTEGER DECLARATION
integer delay;
integer i;
// INITIAL CONSTRUCT BLOCK
initial begin
delay <= lpm_delay - 1;
for (i = 0; i <= lpm_delay; i = i + 1) dffpipe[i] <= 0;
q <= 0;
end
// ALWAYS CONSTRUCT BLOCK
always @(posedge aclr or posedge clock) begin
if (aclr) begin
for (i = 0; i <= lpm_delay; i = i + 1) dffpipe[i] <= 0;
q <= 0;
end else if (clock) begin
if ((lpm_delay > 0) && ($time > 0)) begin
if (delay > 0) begin
for (i = delay; i > 0; i = i - 1) dffpipe[i] <= dffpipe[i-1];
q <= dffpipe[delay-1];
end else q <= d;
dffpipe[0] <= d;
end
end
end // @(posedge aclr or posedge clock)
always @(d) begin
if (lpm_delay == 0) q <= d;
end // @(d)
endmodule
| 7.553269
|
module lpm_fifo_dc (
data,
rdclock,
wrclock,
aclr,
rdreq,
wrreq,
rdfull,
wrfull,
rdempty,
wrempty,
rdusedw,
wrusedw,
q
);
// GLOBAL PARAMETER DECLARATION
parameter lpm_width = 1;
parameter lpm_widthu = 1;
parameter lpm_numwords = 2;
parameter lpm_showahead = "OFF";
parameter underflow_checking = "ON";
parameter overflow_checking = "ON";
parameter lpm_hint = "";
parameter lpm_type = "lpm_fifo_dc";
// LOCAL PARAMETER DECLARATION
parameter delay_rdusedw = 1;
parameter delay_wrusedw = 1;
parameter rdsync_delaypipe = 3;
parameter wrsync_delaypipe = 3;
// INPUT PORT DECLARATION
input [lpm_width-1:0] data;
input rdclock;
input wrclock;
input aclr;
input rdreq;
input wrreq;
// OUTPUT PORT DECLARATION
output rdfull;
output wrfull;
output rdempty;
output wrempty;
output [lpm_widthu-1:0] rdusedw;
output [lpm_widthu-1:0] wrusedw;
output [lpm_width-1:0] q;
// internal reg
wire w_rdfull_s;
wire w_wrfull_s;
wire w_rdempty_s;
wire w_wrempty_s;
wire w_rdfull_a;
wire w_wrfull_a;
wire w_rdempty_a;
wire w_wrempty_a;
wire [lpm_widthu-1:0] w_rdusedw_s;
wire [lpm_widthu-1:0] w_wrusedw_s;
wire [lpm_widthu-1:0] w_rdusedw_a;
wire [lpm_widthu-1:0] w_wrusedw_a;
wire [lpm_width-1:0] w_q_s;
wire [lpm_width-1:0] w_q_a;
wire i_aclr;
// INTERNAL TRI DECLARATION
tri0 aclr;
buf (i_aclr, aclr);
// COMPONENT INSTANTIATIONS
lpm_fifo_dc_async ASYNC (
.data(data),
.rdclk(rdclock),
.wrclk(wrclock),
.aclr(i_aclr),
.rdreq(rdreq),
.wrreq(wrreq),
.rdfull(w_rdfull_a),
.wrfull(w_wrfull_a),
.rdempty(w_rdempty_a),
.wrempty(w_wrempty_a),
.rdusedw(w_rdusedw_a),
.wrusedw(w_wrusedw_a),
.q(w_q_a)
);
defparam ASYNC.lpm_width = lpm_width, ASYNC.lpm_widthu = lpm_widthu, ASYNC.lpm_numwords =
lpm_numwords, ASYNC.delay_rdusedw = delay_rdusedw, ASYNC.delay_wrusedw = delay_wrusedw,
ASYNC.rdsync_delaypipe = rdsync_delaypipe, ASYNC.wrsync_delaypipe = wrsync_delaypipe,
ASYNC.lpm_showahead = lpm_showahead, ASYNC.underflow_checking = underflow_checking,
ASYNC.overflow_checking = overflow_checking, ASYNC.lpm_hint = lpm_hint;
// CONTINOUS ASSIGNMENT
assign rdfull = w_rdfull_a;
assign wrfull = w_wrfull_a;
assign rdempty = w_rdempty_a;
assign wrempty = w_wrempty_a;
assign rdusedw = w_rdusedw_a;
assign wrusedw = w_wrusedw_a;
assign q = w_q_a;
endmodule
| 7.282858
|
module lpm_outpad (
data,
pad
);
// GLOBAL PARAMETER DECLARATION
parameter lpm_width = 1;
parameter lpm_type = "lpm_outpad";
parameter lpm_hint = "UNUSED";
// INPUT PORT DECLARATION
input [lpm_width-1:0] data;
// OUTPUT PORT DECLARATION
output [lpm_width-1:0] pad;
// INTERNAL REGISTER/SIGNAL DECLARATION
reg [lpm_width-1:0] pad;
// INITIAL CONSTRUCT BLOCK
initial begin
if (lpm_width <= 0) begin
$display("Value of lpm_width parameter must be greater than 0(ERROR)");
$display("Time: %0t Instance: %m", $time);
$finish;
end
end
// ALWAYS CONSTRUCT BLOCK
always @(data) begin
pad = data;
end
endmodule
| 6.730452
|
module count4 (
q,
data,
clock,
clk_en,
cnt_en,
updown,
sset,
sclr,
sload
);
parameter lpm_width = 4;
output [lpm_width-1:0] q;
input [lpm_width-1:0] data;
input clock, clk_en, cnt_en, updown;
input sset, sclr, sload;
lpm_counter U1 (
.q(q),
.data(data),
.clock(clock),
.clk_en(clk_en),
.cnt_en(cnt_en),
.updown(updown),
.sset(sset),
.sclr(sclr),
.sload(sload)
);
defparam U1.lpm_width = 4;
endmodule
| 7.148055
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((!(opcode == 'b010001001)) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ('0 && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ('1 && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (!(mod == 3)));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && '0);
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && '1);
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) || (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module div_odd (
clk,
rst_n,
clkout
);
input clk;
input rst_n;
output clkout;
reg pos_clk;
reg neg_clk;
reg [2:0] count1;
reg [2:0] count2;
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
count1 <= 3'd0;
pos_clk <= 1'b0;
end else begin
if (count1 < 3'd2) begin
pos_clk <= 1'b1;
count1 <= count1 + 1'b1;
end else if (count1 < 3'd4) begin
pos_clk <= 1'b0;
count1 <= count1 + 1'b1;
end else count1 <= 3'd0;
end
end
always @(negedge clk or negedge rst_n) begin
if (!rst_n) begin
count2 <= 3'd0;
neg_clk <= 1'b0;
end else begin
if (count2 < 3'd2) begin
neg_clk <= 1'b1;
count2 <= count2 + 1'b1;
end else if (count2 < 3'd4) begin
neg_clk <= 1'b0;
count2 <= count2 + 1'b1;
end else count2 <= 3'd0;
end
end
assign clkout = pos_clk | neg_clk;
endmodule
| 6.538557
|
module div_odd_tb ();
reg clk;
reg rst_n;
wire clkout;
initial begin
clk = 0;
rst_n = 1;
#10 rst_n = 0;
#10 rst_n = 1;
end
always #2 clk <= ~clk;
div_odd test (
.clk(clk),
.rst_n(rst_n),
.clkout(clkout)
);
endmodule
| 7.170528
|
module top_module (
input clk,
input areset,
input x,
output z
);
parameter IDLE = 0, S0 = 1, S1 = 2, S2 = 3;
reg [1:0] cstate, nstate;
always @(posedge clk or posedge areset) begin
if (areset) begin
cstate <= IDLE;
end else begin
cstate <= nstate;
end
end
always @(*) begin
case (cstate)
IDLE: nstate = x ? S0 : IDLE;
S0: nstate = x ? S2 : S1;
S1: nstate = x ? S2 : S1;
S2: nstate = x ? S2 : S1;
endcase
end
assign z = (cstate == S0 || cstate == S1);
endmodule
| 7.203305
|
module top_module (
input clk,
input d,
output q
);
wire q_1;
wire q_2;
my_dff u_my_dff_1 (
.clk(clk),
.d (d),
.q (q_1)
);
my_dff u_my_dff_2 (
.clk(clk),
.d (q_1),
.q (q_2)
);
my_dff u_my_dff_3 (
.clk(clk),
.d (q_2),
.q (q)
);
endmodule
| 7.203305
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = (~((opcode == 'b010001001) && (mod == 1)));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = '0;
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = '1;
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module top_module (
input clk,
input areset,
input x,
output z
);
parameter A = 0, B = 1;
reg [1:0] cstate, nstate;
always @(posedge clk or posedge areset) begin
if (areset) begin
cstate <= A;
end else begin
cstate <= nstate;
end
end
always @(*) begin
case (cstate)
A: nstate = x ? B : A;
B: nstate = B;
endcase
end
assign z = (cstate == A) ? x : ~x;
endmodule
| 7.203305
|
module seqdet (
clk,
rst_n,
x,
flag
);
input clk;
input rst_n;
input x;
output reg flag;
parameter idle=3'b000,s1=3'b001,s2=3'b010,s3=3'b011,s4=3'b100,s5=3'b101,s6=3'b110;
reg [2:0] state;
reg [2:0] next_state;
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
state <= idle;
next_state <= idle;
end else state <= next_state;
end
always @(*) begin
case (state)
idle: begin
if (x == 1'b0) next_state <= idle;
else next_state <= s1;
end
s1: begin
if (x == 1'b0) next_state <= s2;
else next_state <= s1;
end
s2: begin
if (x == 1'b0) next_state <= idle;
else next_state <= s3;
end
s3: begin
if (x == 1'b0) next_state <= s2;
else next_state <= s4;
end
s4: begin
if (x == 1'b0) next_state <= s5;
else next_state <= s1;
end
s5: begin
if (x == 1'b0) next_state <= idle;
else next_state <= s6;
end
s6: begin
if (x == 1'b0) next_state <= idle;
else next_state <= s1;
end
default: next_state <= idle;
endcase
end
always @(posedge clk or negedge rst_n) begin
if (!rst_n) flag <= 1'b0;
else begin
if (state == s6) flag <= 1'b1;
else flag <= 1'b0;
end
end
endmodule
| 7.387939
|
module seqdet_tb ();
reg clk, rst_n;
reg [23:0] data;
wire flag, x;
assign x = data[23];
initial begin
clk = 0;
rst_n = 1;
#10 rst_n = 0;
#10 rst_n = 1;
data = 24'b1011_0101_1011_0101_0100_0101;
end
always #2 clk = ~clk;
always @(posedge clk) begin
data = {data[22:0], data[23]};
end
seqdet m (
.clk(clk),
.rst_n(rst_n),
.x(x),
.flag(flag)
);
endmodule
| 6.662055
|
module top_module (
input clk,
input [7:0] d,
input [1:0] sel,
output [7:0] q
);
wire [7:0] q1;
wire [7:0] q2;
wire [7:0] q3;
my_dff8 u_my_dff8_1 (
.clk(clk),
.d (d),
.q (q1)
);
my_dff8 u_my_dff8_2 (
.clk(clk),
.d (q1),
.q (q2)
);
my_dff8 u_my_dff8_3 (
.clk(clk),
.d (q2),
.q (q3)
);
always @(*) begin
case (sel)
2'b00: q = d;
2'b01: q = q1;
2'b10: q = q2;
2'b11: q = q3;
endcase
end
endmodule
| 7.203305
|
module scorecounter (
clock,
resetwire,
HEX0,
HEX1,
HEX2,
scorecount
);
input resetwire, clock;
output [6:0] HEX0, HEX1, HEX2;
reg [3:0] hexconvert0, hexconvert1, hexconvert2;
input [9:0] scorecount;
initial begin
hexconvert0 = 0;
hexconvert1 = 0;
hexconvert2 = 0;
end
hexerpoutput H0 (
HEX0,
HEX1,
HEX2,
hexconvert0,
hexconvert1,
hexconvert2
);
always @(scorecount) begin
hexconvert0 = scorecount % 10;
if ((scorecount - hexconvert0) % 100 == 10) hexconvert1 = 1;
else if ((scorecount - hexconvert0) % 100 == 20) hexconvert1 = 2;
else if ((scorecount - hexconvert0) % 100 == 30) hexconvert1 = 3;
else if ((scorecount - hexconvert0) % 100 == 40) hexconvert1 = 4;
else if ((scorecount - hexconvert0) % 100 == 50) hexconvert1 = 5;
else if ((scorecount - hexconvert0) % 100 == 60) hexconvert1 = 6;
else if ((scorecount - hexconvert0) % 100 == 70) hexconvert1 = 7;
else if ((scorecount - hexconvert0) % 100 == 80) hexconvert1 = 8;
else if ((scorecount - hexconvert0) % 100 == 90) hexconvert1 = 9;
else hexconvert1 = 0;
if ((scorecount - hexconvert0 - hexconvert1 * 10) == 100) hexconvert2 = 1;
else if ((scorecount - hexconvert0 - hexconvert1 * 10) == 200) hexconvert2 = 2;
else if ((scorecount - hexconvert0 - hexconvert1 * 10) == 300) hexconvert2 = 3;
else if ((scorecount - hexconvert0 - hexconvert1 * 10) == 400) hexconvert2 = 4;
else if ((scorecount - hexconvert0 - hexconvert1 * 10) == 500) hexconvert2 = 5;
else if ((scorecount - hexconvert0 - hexconvert1 * 10) == 600) hexconvert2 = 6;
else if ((scorecount - hexconvert0 - hexconvert1 * 10) == 700) hexconvert2 = 7;
else if ((scorecount - hexconvert0 - hexconvert1 * 10) == 800) hexconvert2 = 8;
else if ((scorecount - hexconvert0 - hexconvert1 * 10) == 900) hexconvert2 = 9;
else hexconvert2 = 0;
end
endmodule
| 6.690009
|
module enablercount (
CLOCK_50,
reset,
enable,
divider,
enabledelay1,
enabledelay2,
enabledelay3,
enabledelay4,
enabledelay5
);
input CLOCK_50, reset;
input [2:0] divider;
output reg enable;
output reg enabledelay1;
output reg enabledelay2;
output reg enabledelay3;
output reg enabledelay4;
output reg enabledelay5;
reg [32:0] count;
always @(posedge CLOCK_50 or negedge reset) begin
if (!reset) count = 0;
else begin
if (divider==3'b000&&count==2499999||divider==3'b001&&count==2299999||divider==3'b010&&count==1999999||divider==3'b011&&count==1899999
||divider==3'b100&&count==1699999||divider==3'b101&&count==1499999||divider==3'b110&&count==1299999||divider==3'b111&&count==99999)
count = 0;
else count = count + 1;
end
end
always @(posedge CLOCK_50 or negedge reset) begin
if (!reset) begin
enable <= 0;
enabledelay1 <= 0;
enabledelay2 <= 0;
enabledelay3 <= 0;
enabledelay4 <= 0;
enabledelay5 <= 0;
end else begin
if (count == 0) enable <= 1;
else enable <= 0;
enabledelay1 <= enable;
enabledelay2 <= enabledelay1;
enabledelay3 <= enabledelay2;
enabledelay4 <= enabledelay3;
enabledelay5 <= enabledelay4;
end
end
endmodule
| 6.922756
|
module modulox (
xpositionW,
is0,
enable,
CLOCK_50
);
input [7:0] xpositionW;
input CLOCK_50;
input enable;
output reg is0;
always @(CLOCK_50)
if (enable == 1'b1)
if (xpositionW % 10 == 0) is0 = 1;
else is0 = 0;
endmodule
| 6.994745
|
module PS2_Demo (
// Inputs
CLOCK_50,
KEY,
// Bidirectionals
PS2_CLK,
PS2_DAT,
// Outputs
HEX0,
HEX1,
HEX2,
HEX3,
HEX4,
HEX5,
HEX6,
HEX7
);
/*****************************************************************************
* Parameter Declarations *
*****************************************************************************/
/*****************************************************************************
* Port Declarations *
*****************************************************************************/
// Inputs
input CLOCK_50;
input [3:0] KEY;
// Bidirectionals
inout PS2_CLK;
inout PS2_DAT;
// Outputs
output [6:0] HEX0;
output [6:0] HEX1;
output [6:0] HEX2;
output [6:0] HEX3;
output [6:0] HEX4;
output [6:0] HEX5;
output [6:0] HEX6;
output [6:0] HEX7;
/*****************************************************************************
* Internal Wires and Registers Declarations *
*****************************************************************************/
// Internal Wires
wire [7:0] ps2_key_data;
wire ps2_key_pressed;
// Internal Registers
reg [7:0] last_data_received;
// State Machine Registers
/*****************************************************************************
* Finite State Machine(s) *
*****************************************************************************/
/*****************************************************************************
* Sequential Logic *
*****************************************************************************/
always @(posedge CLOCK_50) begin
if (KEY[0] == 1'b0) last_data_received <= 8'h00;
else if (ps2_key_pressed == 1'b1) last_data_received <= ps2_key_data;
end
/*****************************************************************************
* Combinational Logic *
*****************************************************************************/
assign HEX2 = 7'h7F;
assign HEX3 = 7'h7F;
assign HEX4 = 7'h7F;
assign HEX5 = 7'h7F;
assign HEX6 = 7'h7F;
assign HEX7 = 7'h7F;
/*****************************************************************************
* Internal Modules *
*****************************************************************************/
PS2_Controller PS2 (
// Inputs
.CLOCK_50(CLOCK_50),
.reset (~KEY[0]),
// Bidirectionals
.PS2_CLK(PS2_CLK),
.PS2_DAT(PS2_DAT),
// Outputs
.received_data(ps2_key_data),
.received_data_en(ps2_key_pressed)
);
Hexadecimal_To_Seven_Segment Segment0 (
// Inputs
.hex_number(last_data_received[3:0]),
// Bidirectional
// Outputs
.seven_seg_display(HEX0)
);
Hexadecimal_To_Seven_Segment Segment1 (
// Inputs
.hex_number(last_data_received[7:4]),
// Bidirectional
// Outputs
.seven_seg_display(HEX1)
);
endmodule
| 8.682108
|
module mux (
a,
b,
s,
o
);
input a;
input b;
input s;
output o;
assign o = (s == 0) ? b : a;
endmodule
| 8.268895
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = (((~opcode) == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = (('0 == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = (('1 == 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == (~'b010001001)) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == '0) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == '1) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode != 'b010001001) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module top_module (
input clk,
input reset, // Synchronous reset
input s,
input w,
output z
);
parameter A = 0, B = 1;
reg cstate, nstate;
reg [1:0] cnt;
reg cnt_end;
reg [1:0] w_cnt;
assign z = cnt_end;
always @(posedge clk) begin
if (reset) begin
cstate <= A;
end else begin
cstate <= nstate;
end
end
always @(*) begin
case (cstate)
A: nstate = s ? B : A;
B: nstate = B;
endcase
end
always @(posedge clk) begin
if (reset) begin
cnt <= 2'b00;
w_cnt <= 2'b00;
cnt_end <= 0;
end else begin
if (cstate == B) begin
if (cnt == 3 - 1) begin
cnt <= 2'b00;
w_cnt <= 2'b00;
if (w == 1) begin
if (w_cnt == 1) begin
cnt_end <= 1;
end else begin
cnt_end <= 0;
end
end else begin
if (w_cnt == 2) begin
cnt_end <= 1;
end else begin
cnt_end <= 0;
end
end
end else begin
cnt_end <= 0;
cnt <= cnt + 1;
if (w == 1) begin
w_cnt <= w_cnt + 1;
end else begin
w_cnt <= w_cnt + 0;
end
end
end
end
end
endmodule
| 7.203305
|
module top_module (
input [31:0] a,
input [31:0] b,
output [31:0] sum
);
wire cout_lo;
wire [15:0] sum_lo;
wire [15:0] sum_hi;
wire cout;
wire cin_lo;
add16 add16_lo (
.a({a[15:0]}),
.b({b[15:0]}),
.cin(cin_lo),
.sum(sum_lo),
.cout(cout_lo)
);
add16 add16_hi (
.a({a[31:16]}),
.b({b[31:16]}),
.cin(cout_lo),
.sum(sum_hi),
.cout(cout)
);
assign sum = {sum_hi, sum_lo};
endmodule
| 7.203305
|
module top_module (
input [1023:0] in,
input [7:0] sel,
output [3:0] out
);
// We can't part-select multiple bits without an error, but we can select one bit at a time,
// four times, then concatenate them together.
assign out = {in[sel*4+3], in[sel*4+2], in[sel*4+1], in[sel*4+0]};
endmodule
| 7.203305
|
module top_module (
input [1023:0] in,
input [7:0] sel,
output [3:0] out
);
assign out = in[4*sel+:4];
endmodule
| 7.203305
|
module top_module (
input [255:0] in,
input [7:0] sel,
output out
);
assign out = in[sel];
endmodule
| 7.203305
|
module SRAM (
dat_in,
addr_in,
w_en,
clk,
read_d
);
input wire [3:0] dat_in;
input wire [7:0] addr_in;
input wire w_en, clk;
output wire [3:0] read_d;
/* Declare the RAM variable */
reg [3:0] ram[255:0];
/* Variable to hold the registered read address */
reg [7:0] addr_reg = 8'b00000000;
reg [3:0] read_d_r = 4'b0000;
//integer i;
//initial
//begin
// for (i=0;i<256;i=i+1)
// begin
// ram[i]=4'b00;
// end
//end
always @(posedge clk) begin
/*Write*/
if (w_en) begin
ram[addr_in] = dat_in;
addr_reg = addr_in;
end else begin
addr_reg = addr_in;
end
read_d_r = ram[addr_reg];
end
/* Continuous assignment implies read returns NEW data.
* This is the natural behavior of the TriMatrix memory
* blocks in Single Port mode*/
assign read_d = read_d_r;
endmodule
| 7.472043
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && ((~mod) == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && ('0 == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && ('1 == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == (~1)));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == '0));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == '1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod != 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module top_module (
input clk,
input reset, // Synchronous reset
input x,
output z
);
parameter S0 = 3'b000;
parameter S1 = 3'b001;
parameter S2 = 3'b010;
parameter S3 = 3'b011;
parameter S4 = 3'b100;
reg [2:0] cstate, nstate;
always @(posedge clk) begin
if (reset) begin
cstate <= S0;
end else begin
cstate <= nstate;
end
end
always @(*) begin
case (cstate)
S0: nstate = x ? S1 : S0;
S1: nstate = x ? S4 : S1;
S2: nstate = x ? S1 : S2;
S3: nstate = x ? S2 : S1;
S4: nstate = x ? S4 : S3;
endcase
end
assign z = (cstate == S3 || cstate == S4);
endmodule
| 7.203305
|
module top_module (
input [31:0] a,
input [31:0] b,
output [31:0] sum
); //
wire cin1, cout1, cout2;
wire [15:0] sum1, sum2;
assign cin1 = 0;
add16 u_add16_0 (
.a(a[15:0]),
.b(b[15:0]),
.cin(cin1),
.sum(sum1),
.cout(cout1)
);
add16 u_add16_1 (
.a(a[31:16]),
.b(b[31:16]),
.cin(cout1),
.sum(sum2),
.cout(cout2)
);
assign sum = {sum2, sum1};
endmodule
| 7.203305
|
module add1 (
input a,
input b,
input cin,
output sum,
output cout
);
// Full adder module here
assign sum = a ^ b ^ cin;
assign cout = a & b | (a ^ b) & cin;
endmodule
| 6.640243
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((!(opcode == 'b010001001)) && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ('0 && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ('1 && (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (!(mod == 1)));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && '0);
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && '1);
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) || (mod == 1));
wire memory = (load || store);
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module a_s_reset (
clk,
rst_n,
din,
dout
);
input clk;
input rst_n;
input [7:0] din;
output reg [7:0] dout;
reg reg1, reg2;
wire reset;
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
reg1 <= 1'b0;
reg2 <= 1'b0;
end else begin
reg1 <= rst_n;
reg2 <= reg1;
end
end
assign reset = reg2;
always @(posedge clk or negedge reset) begin
if (!reset) dout <= 8'd0;
else dout <= din;
end
endmodule
| 6.77581
|
module a_s_reset_tb ();
reg clk;
reg rst_n;
reg [7:0] din;
wire [7:0] dout;
initial begin
clk = 0;
rst_n = 1;
din = 8'b1010_1010;
#10 rst_n = 0;
#10 rst_n = 1;
end
always #2 clk <= ~clk;
a_s_reset dut (
.clk (clk),
.rst_n(rst_n),
.din (din),
.dout (dout)
);
endmodule
| 6.887683
|
module top_module (
input clk,
input [2:0] y,
input x,
output Y0,
output z
);
always @(*) begin
case (y)
3'b000, 3'b010: Y0 = x;
default: Y0 = ~x;
endcase
end
assign z = (y == 3'b011 || y == 3'b100);
endmodule
| 7.203305
|
module top_module (
input [31:0] a,
input [31:0] b,
output [31:0] sum
);
wire cin;
wire [15:0] sum1;
wire [15:0] sum2_0;
wire [15:0] sum2_1;
wire cout1, cout1_0, cout1_1;
wire cout2_0, cout2_1;
assign cin = 0;
assign cout1_0 = 0;
assign cout1_1 = 1;
add16 u_add16_1 (
.a(a[15:0]),
.b(b[15:0]),
.cin(cin),
.sum(sum1),
.cout(cout1)
);
//assume cout1 = 0
add16 u_add16_2_0 (
.a(a[31:16]),
.b(b[31:16]),
.cin(cout1_0),
.sum(sum2_0),
.cout(cout2_0)
);
//assume cout1 = 1
add16 u_add16_2_1 (
.a(a[31:16]),
.b(b[31:16]),
.cin(cout1_1),
.sum(sum2_1),
.cout(cout2_1)
);
always @(a or b) begin
if (cout1 == 0) sum = {sum2_0, sum1};
else sum = {sum2_1, sum1};
end
endmodule
| 7.203305
|
module ALU (
sum,
cout,
a,
b,
cin,
ov
);
input [7:0] a;
input [7:0] b;
input cin;
output [7:0] sum;
output cout, ov;
wire cin7;
reg [7:0] d;
RCA_8 n1_inst (
sum,
cout,
a,
d,
cin,
cin7
);
assign ov = cout ^ cin7;
always @(*) begin
if (!cin) begin
d = b;
end else if (cin) begin
d = ~b;
end
end
endmodule
| 6.859596
|
module RCA_8 (
sum,
cout,
a,
b,
cin,
cin7
);
output [7:0] sum;
output cout, cin7;
input [7:0] a, b;
input cin;
wire cin1, cin2, cin3, cin4, cin5, cin6;
add_full U1 (
sum[0],
cin1,
a[0],
b[0],
cin
);
add_full U2 (
sum[1],
cin2,
a[1],
b[1],
cin1
);
add_full U3 (
sum[2],
cin3,
a[2],
b[2],
cin2
);
add_full U4 (
sum[3],
cin4,
a[3],
b[3],
cin3
);
add_full U5 (
sum[4],
cin5,
a[4],
b[4],
cin4
);
add_full U6 (
sum[5],
cin6,
a[5],
b[5],
cin5
);
add_full U7 (
sum[6],
cin7,
a[6],
b[6],
cin6
);
add_full U8 (
sum[7],
cout,
a[7],
b[7],
cin7
);
endmodule
| 6.550225
|
module add_full (
sum,
cout,
a,
b,
cin
);
input a, b, cin;
output cout, sum;
wire w1, w2, w3;
add_half U1 (
w1,
w2,
a,
b
);
add_half U2 (
sum,
w3,
cin,
w1
);
assign cout = w2 | w3;
endmodule
| 7.057721
|
module add_half (
sum,
cout,
a,
b
);
input a, b;
output cout, sum;
assign sum = a ^ b;
assign cout = a & b;
endmodule
| 7.260022
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = (~(load || store));
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = '0;
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module y86_seq (
input clk,
input rst,
output [31:0] bus_A,
input [31:0] bus_in,
output [31:0] bus_out,
output bus_WE,
bus_RE,
output [7:0] current_opcode
);
reg [5:1] full;
wire [4:0] ue = {full[4:1], full[5]};
always @(posedge clk) begin
if (rst) full <= 'b010000;
else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]};
end
reg [31:0] IR;
always @(posedge clk) if (ue[0]) IR <= bus_in;
reg [31:0] IP, A, B;
wire [31:0] Aop, Bop;
wire [7:0] opcode = IR[7:0];
wire [1:0] mod = IR[15:14];
reg ZF;
wire load = ((opcode == 'b010001011) && (mod == 1));
wire move = ((opcode == 'b010001001) && (mod == 3));
wire store = ((opcode == 'b010001001) && (mod == 1));
wire memory = '1;
wire add = (opcode == 'b01);
wire sub = (opcode == 'b0101001);
wire halt = (opcode == 'b011110100);
wire aluop = (add || sub);
wire jnez = (opcode == 'b01110101);
wire [4:0] RD = IR[10:8];
wire [4:0] RS = IR[13:11];
wire [4:0] Aad = (memory ? 6 : RD), Bad = RS;
wire [31:0] distance = {{24{IR[15]}}, IR[15:8]};
wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]};
wire btaken = (jnez && (!ZF));
wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1));
always @(posedge clk)
if (rst) IP <= 0;
else if (ue[1]) begin
A <= Aop;
B <= Bop;
if ((!halt)) begin
IP <= ((IP + length) + (btaken ? distance : 0));
end else begin
$finish;
end
end
reg [31:0] MAR, MDRw, C;
wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B));
wire [31:0] ALUout = ((A + ALU_op2) + sub);
always @(posedge clk)
if (rst) ZF = 0;
else if (ue[2]) begin
MAR <= ALUout;
C <= (move ? B : ALUout);
MDRw <= B;
if (aluop) ZF <= (ALUout == 0);
end
reg [31:0] MDRr;
always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in;
assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0));
assign bus_RE = (ue[0] || (ue[3] && load));
reg [31:0] R[7:0];
assign Aop = R[Aad];
assign Bop = R[Bad];
assign bus_WE = (ue[3] && store);
assign bus_out = MDRw;
always @(posedge clk)
if (rst) begin
R[0] <= 0;
R[1] <= 0;
R[2] <= 0;
R[3] <= 0;
R[4] <= 0;
R[5] <= 0;
R[6] <= 0;
R[7] <= 0;
end else if (ue[4])
if (((aluop || move) || load))
if (load) R[RS] <= MDRr;
else R[RD] <= C;
assign current_opcode = opcode;
endmodule
| 6.868788
|
module pre_adder (
mode,
dir,
a,
b,
c
);
input mode;
input dir;
input [26 : 0] a;
input [25 : 0] b;
input [26 : 0] c;
assign c = mode ? (dir ? a - b : a + b) : a;
endmodule
| 6.718407
|
module number_list (
clk,
rst_n,
dout
);
input clk;
input rst_n;
output dout;
reg [9:0] init;
always @(posedge clk or negedge rst_n) begin
if (!rst_n) init <= 10'b0010_1101_11;
else init <= {init[8:0], init[9]};
end
assign dout = init[9];
endmodule
| 6.686257
|
module number_list_tb ();
reg clk;
reg rst_n;
wire dout;
initial begin
clk = 0;
rst_n = 1;
#10 rst_n = 0;
#10 rst_n = 1;
end
always #2 clk <= ~clk;
number_list dut (
.clk (clk),
.rst_n(rst_n),
.dout (dout)
);
endmodule
| 6.831512
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.