Datasets:
Tasks:
Question Answering
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
table-question-answering
License:
File size: 8,559 Bytes
3ff337e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables."""
import os
import datasets
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{pasupat-liang-2015-compositional,
title = "Compositional Semantic Parsing on Semi-Structured Tables",
author = "Pasupat, Panupong and Liang, Percy",
booktitle = "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = jul,
year = "2015",
address = "Beijing, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P15-1142",
doi = "10.3115/v1/P15-1142",
pages = "1470--1480",
}
"""
# You can copy an official description
_DESCRIPTION = """\
This WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.
"""
_HOMEPAGE = "https://nlp.stanford.edu/software/sempre/wikitable"
_LICENSE = "Creative Commons Attribution Share Alike 4.0 International"
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_DATA_URL = (
"https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip"
)
class WikiTableQuestions(datasets.GeneratorBasedBuilder):
"""WikiTableQuestions: a large-scale dataset for the task of question answering on semi-structured tables."""
VERSION = datasets.Version("1.0.2")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="random-split-1",
version=VERSION,
description="The random-split-1-train/dev.tsv and pristine-unseen-tables.tsv",
),
datasets.BuilderConfig(
name="random-split-2",
version=VERSION,
description="The random-split-2-train/dev.tsv and pristine-unseen-tables.tsv",
),
datasets.BuilderConfig(
name="random-split-3",
version=VERSION,
description="The random-split-3-train/dev.tsv and pristine-unseen-tables.tsv",
),
datasets.BuilderConfig(
name="random-split-4",
version=VERSION,
description="The random-split-4-train/dev.tsv and pristine-unseen-tables.tsv",
),
datasets.BuilderConfig(
name="random-split-5",
version=VERSION,
description="The random-split-5-train/dev.tsv and pristine-unseen-tables.tsv",
),
]
DEFAULT_CONFIG_NAME = (
"random-split-1" # It's not mandatory to have a default configuration. Just use one if it make sense.
)
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(datasets.Value("string")),
"table": {
"header": datasets.features.Sequence(datasets.Value("string")),
"rows": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
"name": datasets.Value("string"),
},
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_file = "{}-train.tsv".format(self.config.name)
dev_file = "{}-dev.tsv".format(self.config.name)
test_file = "pristine-unseen-tables.tsv"
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
urls = _DATA_URL
root_dir = os.path.join(dl_manager.download_and_extract(urls), "WikiTableQuestions")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"main_filepath": os.path.join(root_dir, "data", train_file), "root_dir": root_dir},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"main_filepath": os.path.join(root_dir, "data", test_file), "root_dir": root_dir},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"main_filepath": os.path.join(root_dir, "data", dev_file), "root_dir": root_dir},
),
]
def _read_table_from_file(self, table_name: str, root_dir: str):
def _extract_table_content(_line: str):
_vals = [_.replace("\n", " ").strip() for _ in _line.strip("\n").split("\t")]
return _vals
rows = []
# assert ".csv" in _wtq_table_name
# use the normalized table file
table_name = table_name.replace(".csv", ".tsv")
with open(os.path.join(root_dir, table_name), "r", encoding="utf8") as table_f:
table_lines = table_f.readlines()
# the first line is header
header = _extract_table_content(table_lines[0])
for line in table_lines[1:]:
rows.append(_extract_table_content(line))
return {"header": header, "rows": rows, "name": table_name}
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, main_filepath, root_dir):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(main_filepath, encoding="utf-8") as f:
# skip the first line since it is the tsv header
next(f)
for idx, line in enumerate(f):
example_id, question, table_name, answer = line.strip("\n").split("\t")
answer = answer.split("|")
# must contain rows and header keys
table_content = self._read_table_from_file(table_name, root_dir)
yield idx, {"id": example_id, "question": question, "answers": answer, "table": table_content}
|