Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Korean
Size:
1K - 10K
Tags:
sarcasm-detection
License:
File size: 4,577 Bytes
d570aaa 006e0fb d570aaa 006e0fb d570aaa e88ee49 3d5c2b0 039821b e88ee49 d570aaa 3d5c2b0 d570aaa f78cce5 d570aaa 559c568 d570aaa 075f3ab f78cce5 e88ee49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- ko
license:
- mit
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
paperswithcode_id: null
pretty_name: Korean Sarcasm Detection
tags:
- sarcasm-detection
---
# Dataset Card for Korean Sarcasm Detection
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Korean Sarcasm Detection](https://github.com/SpellOnYou/korean-sarcasm)
- **Repository:** [Korean Sarcasm Detection](https://github.com/SpellOnYou/korean-sarcasm)
- **Point of Contact:** [Dionne Kim](jiwon.kim.096@gmail.com)
### Dataset Summary
The Korean Sarcasm Dataset was created to detect sarcasm in text, which can significantly alter the original meaning of a sentence. 9319 tweets were collected from Twitter and labeled for `sarcasm` or `not_sarcasm`. These tweets were gathered by querying for: `역설, 아무말, 운수좋은날, 笑, 뭐래 아닙니다, 그럴리없다, 어그로, irony sarcastic, and sarcasm`. The dataset was pre-processed by removing the keyword hashtag, urls and mentions of the user to maintain anonymity.
### Supported Tasks and Leaderboards
* `sarcasm_detection`: The dataset can be used to train a model to detect sarcastic tweets. A [BERT](https://huggingface.co/bert-base-uncased) model can be presented with a tweet in Korean and be asked to determine whether it is sarcastic or not.
### Languages
The text in the dataset is in Korean and the associated is BCP-47 code is `ko-KR`.
## Dataset Structure
### Data Instances
An example data instance contains a Korean tweet and a label whether it is sarcastic or not. `1` maps to sarcasm and `0` maps to no sarcasm.
```
{
"tokens": "[ 수도권 노선 아이템 ] 17 . 신분당선의 #딸기 : 그의 이미지 컬러 혹은 머리 색에서 유래한 아이템이다 . #메트로라이프"
"label": 0
}
```
### Data Fields
* `tokens`: contains the text of the tweet
* `label`: determines whether the text is sarcastic (`1`: sarcasm, `0`: no sarcasm)
### Data Splits
The data is split into a training set comrpised of 9018 tweets and a test set of 301 tweets.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
The dataset was created by gathering HTML data from Twitter. Queries for hashtags that include sarcasm and variants of it were used to return tweets. It was preprocessed by removing the keyword hashtag, urls and mentions of the user to preserve anonymity.
#### Who are the source language producers?
The source language producers are Korean Twitter users.
### Annotations
#### Annotation process
Tweets were labeled `1` for sarcasm and `0` for no sarcasm.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
Mentions of the user in a tweet were removed to keep them anonymous.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
This dataset was curated by Dionne Kim.
### Licensing Information
This dataset is licensed under the MIT License.
### Citation Information
Unknown citation information: https://github.com/SpellOnYou/korean-sarcasm
### Contributions
Thanks to [@stevhliu](https://github.com/stevhliu) for adding this dataset. |