Update dataset.py
Browse files- dataset.py +1 -143
dataset.py
CHANGED
@@ -3,7 +3,6 @@ import os
|
|
3 |
import os.path as osp
|
4 |
import json
|
5 |
import numpy as np
|
6 |
-
# from konlpy.tag import Okt
|
7 |
|
8 |
import torch
|
9 |
import torch.nn.functional as F
|
@@ -240,11 +239,6 @@ class JointDataset(Dataset):
|
|
240 |
# debug
|
241 |
for ent_k, ent_h in zip(ent_pos_kor, ent_pos_han):
|
242 |
assert len(ent_k) == len(ent_h)
|
243 |
-
# print(json_file)
|
244 |
-
# pprint.pprint(ex["entity"])
|
245 |
-
# print(entities_kor)
|
246 |
-
# print(entities_han)
|
247 |
-
# break
|
248 |
|
249 |
|
250 |
### labels ###
|
@@ -259,19 +253,7 @@ class JointDataset(Dataset):
|
|
259 |
if h_idx is None or t_idx is None:
|
260 |
num_filtered_labels += 1
|
261 |
continue
|
262 |
-
|
263 |
-
# TODO: idx has to match across languages, otherwise the label won't be universal.
|
264 |
-
# if h_idx != h_idx2 or t_idx != t_idx2:
|
265 |
-
# import pdb; pdb.set_trace()
|
266 |
-
# assert h_idx == h_idx2 and t_idx == t_idx2
|
267 |
|
268 |
-
# debugging
|
269 |
-
if not( h_idx == h_idx2 and t_idx == t_idx2) :
|
270 |
-
# print(f"fname: {json_file}")
|
271 |
-
# pprint.pprint(relation)
|
272 |
-
N_data_problems += 1
|
273 |
-
continue
|
274 |
-
|
275 |
r_idx = self.label_map[relation["kor"]["label"]]
|
276 |
labels[h_idx, t_idx, r_idx] = 1
|
277 |
|
@@ -292,16 +274,6 @@ class JointDataset(Dataset):
|
|
292 |
"text_han": ex["text"]["han"]
|
293 |
})
|
294 |
|
295 |
-
# self.features.append({
|
296 |
-
# "input_ids_kor": input_ids_kor,
|
297 |
-
# "input_ids_han": input_ids_han,
|
298 |
-
# "ent_pos_kor": ent_pos_kor,
|
299 |
-
# "ent_pos_han": ent_pos_han,
|
300 |
-
# "labels": labels
|
301 |
-
# })
|
302 |
-
|
303 |
-
print(f"# problems in (h_idx == h_idx2 and t_idx == t_idx2) : {N_data_problems}")
|
304 |
-
|
305 |
logging.info(f"# of empty entity examples filtered: {num_empty_entity_examples}")
|
306 |
logging.info(f"# of empty label examples filtered: {num_empty_label_examples}")
|
307 |
logging.info(f"# of beyond-truncated-text labels filtered: {num_filtered_labels}")
|
@@ -362,8 +334,6 @@ class KoreanDataset(Dataset):
|
|
362 |
self.split = split
|
363 |
self.features = []
|
364 |
|
365 |
-
# self.word_tokenizer = Okt()
|
366 |
-
|
367 |
self.save_dir = osp.join(args.data_dir, args.language)
|
368 |
self.save_path = osp.join(self.save_dir, f"{args.model_type}_{split}.pt")
|
369 |
os.makedirs(self.save_dir, exist_ok=True)
|
@@ -392,7 +362,6 @@ class KoreanDataset(Dataset):
|
|
392 |
|
393 |
logging.info(f"Creating features from {self.args.data_dir}")
|
394 |
rootdir = osp.join(self.args.data_dir, f"{self.split}")
|
395 |
-
# print(f"Current directory: {rootdir}")
|
396 |
|
397 |
for json_file in tqdm(os.listdir(rootdir), desc="Converting examples to features"):
|
398 |
with open(osp.join(rootdir, json_file), encoding='utf-8') as f:
|
@@ -478,28 +447,6 @@ class KoreanDataset(Dataset):
|
|
478 |
ent_pos[-1].append((token_start, token_end))
|
479 |
# ent_ner[-1].append(ment[-1])
|
480 |
|
481 |
-
# ent_masks, ent_ners = [], []
|
482 |
-
# for ent in entities:
|
483 |
-
# ent_mask = np.zeros(len(input_ids), dtype=np.float32)
|
484 |
-
# ent_ner = np.zeros(len(input_ids), dtype=np.float32)
|
485 |
-
|
486 |
-
# for ment in ent:
|
487 |
-
# start, end = ment[3], ment[4]
|
488 |
-
# # Skip entity mentions that appear beyond the truncated text
|
489 |
-
# if (start > self.args.max_seq_length-num_special_tokens or
|
490 |
-
# end > self.args.max_seq_length-num_special_tokens):
|
491 |
-
# continue
|
492 |
-
# ent_mask[start:end] = 1
|
493 |
-
# ent_ner[start:end] = self.ner_map[ment[5]]
|
494 |
-
|
495 |
-
# assert ent_mask.sum() != 0
|
496 |
-
|
497 |
-
# ent_masks.append(ent_mask)
|
498 |
-
# ent_ners.append(ent_ner)
|
499 |
-
|
500 |
-
# ent_masks = np.stack(ent_masks, axis=0)
|
501 |
-
# ent_ners = np.stack(ent_ners, axis=0)
|
502 |
-
|
503 |
### labels ###
|
504 |
labels = torch.zeros((len(entities), len(entities), self.config.num_labels), dtype=torch.float32)
|
505 |
for relation in ex["relation"]:
|
@@ -517,28 +464,13 @@ class KoreanDataset(Dataset):
|
|
517 |
for t in range(len(entities)):
|
518 |
if torch.all(labels[h][t] == 0):
|
519 |
labels[h][t][0] = 1
|
520 |
-
|
521 |
-
### label mask ###
|
522 |
-
# label_mask = np.ones((len(entities), len(entities)), dtype='bool')
|
523 |
-
# np.fill_diagonal(label_mask, 0) # ignore diagonals
|
524 |
-
|
525 |
-
# TODO: normalize ent_masks (test normalization vs. not)
|
526 |
-
# ent_masks = ent_masks / np.expand_dims(ent_masks.sum(1), axis=1)
|
527 |
-
|
528 |
self.features.append({
|
529 |
"input_ids": input_ids,
|
530 |
"ent_pos": ent_pos,
|
531 |
"labels": labels,
|
532 |
})
|
533 |
|
534 |
-
# self.features.append({
|
535 |
-
# "input_ids": input_ids,
|
536 |
-
# "ent_masks": ent_masks,
|
537 |
-
# "ent_ners": ent_ners,
|
538 |
-
# "labels": labels,
|
539 |
-
# "label_mask": label_mask
|
540 |
-
# })
|
541 |
-
|
542 |
logging.info(f"# of empty entity examples filtered: {num_empty_entity_examples}")
|
543 |
logging.info(f"# of empty label examples filtered: {num_empty_label_examples}")
|
544 |
logging.info(f"# of beyond-truncated-text labels filtered: {num_filtered_labels}")
|
@@ -548,32 +480,15 @@ class KoreanDataset(Dataset):
|
|
548 |
|
549 |
def collate_fn(self, samples):
|
550 |
input_ids = [x["input_ids"] for x in samples]
|
551 |
-
|
552 |
ent_pos = [x["ent_pos"] for x in samples]
|
553 |
-
# max_ent_len = max([len(x["ent_pos"]) for x in samples])
|
554 |
-
# ent_masks = [F.pad(torch.from_numpy(x["ent_masks"]), \
|
555 |
-
# (0, 0, 0, max_ent_len-x["ent_masks"].shape[0])) for x in samples]
|
556 |
-
# ent_ners = [F.pad(torch.from_numpy(x["ent_ners"]), \
|
557 |
-
# (0, 0, 0, max_ent_len-x["ent_ners"].shape[0])) for x in samples]
|
558 |
-
|
559 |
labels = [x["labels"].view(-1, self.config.num_labels) for x in samples]
|
560 |
-
# labels = [F.pad(torch.from_numpy(x["labels"]), \
|
561 |
-
# (0, 0, 0, max_ent_len-x["labels"].shape[0], 0, max_ent_len-x["labels"].shape[1]), value=-100) for x in samples]
|
562 |
-
# label_mask = [F.pad(torch.from_numpy(x["label_mask"]), \
|
563 |
-
# (0, max_ent_len-x["label_mask"].shape[0], 0, max_ent_len-x["label_mask"].shape[1])) for x in samples]
|
564 |
|
565 |
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
566 |
-
# ent_masks = torch.stack(ent_masks, dim=0)
|
567 |
labels = torch.cat(labels, dim=0)
|
568 |
-
# labels = torch.stack(labels, dim=0)
|
569 |
-
# label_mask = torch.stack(label_mask, dim=0)
|
570 |
|
571 |
return {"input_ids": input_ids,
|
572 |
"ent_pos": ent_pos,
|
573 |
-
# "ent_masks": ent_masks,
|
574 |
-
# "ent_ners": ent_ners,
|
575 |
"labels": labels,
|
576 |
-
# "label_mask": label_mask,
|
577 |
}
|
578 |
|
579 |
def __len__(self):
|
@@ -623,7 +538,6 @@ class HanjaDataset(Dataset):
|
|
623 |
|
624 |
logging.info(f"Creating features from {self.args.data_dir}")
|
625 |
rootdir = osp.join(self.args.data_dir, f"{self.split}")
|
626 |
-
# print(f"Current directory: {rootdir}")
|
627 |
|
628 |
for json_file in tqdm(os.listdir(rootdir), desc="Converting examples to features"):
|
629 |
with open(osp.join(rootdir, json_file), encoding='utf-8') as f:
|
@@ -702,34 +616,10 @@ class HanjaDataset(Dataset):
|
|
702 |
ent_pos, ent_ner = [], []
|
703 |
for ent in entities:
|
704 |
ent_pos.append([])
|
705 |
-
# ent_ner.append([])
|
706 |
for ment in ent:
|
707 |
token_start, token_end = ment[3], ment[4]
|
708 |
ent_pos[-1].append((token_start, token_end))
|
709 |
-
# ent_ner[-1].append(ment[-1])
|
710 |
-
|
711 |
-
# ent_masks, ent_ners = [], []
|
712 |
-
# for ent in entities:
|
713 |
-
# ent_mask = np.zeros(len(input_ids), dtype=np.float32)
|
714 |
-
# ent_ner = np.zeros(len(input_ids), dtype=np.float32)
|
715 |
-
|
716 |
-
# for ment in ent:
|
717 |
-
# start, end = ment[3], ment[4]
|
718 |
-
# # Skip entity mentions that appear beyond the truncated text
|
719 |
-
# if (start > self.args.max_seq_length-num_special_tokens or
|
720 |
-
# end > self.args.max_seq_length-num_special_tokens):
|
721 |
-
# continue
|
722 |
-
# ent_mask[start:end] = 1
|
723 |
-
# ent_ner[start:end] = self.ner_map[ment[5]]
|
724 |
-
|
725 |
-
# assert ent_mask.sum() != 0
|
726 |
-
|
727 |
-
# ent_masks.append(ent_mask)
|
728 |
-
# ent_ners.append(ent_ner)
|
729 |
|
730 |
-
# ent_masks = np.stack(ent_masks, axis=0)
|
731 |
-
# ent_ners = np.stack(ent_ners, axis=0)
|
732 |
-
|
733 |
### labels ###
|
734 |
labels = torch.zeros((len(entities), len(entities), self.config.num_labels), dtype=torch.float32)
|
735 |
for relation in ex["relation"]:
|
@@ -748,27 +638,12 @@ class HanjaDataset(Dataset):
|
|
748 |
if torch.all(labels[h][t] == 0):
|
749 |
labels[h][t][0] = 1
|
750 |
|
751 |
-
### label mask ###
|
752 |
-
# label_mask = np.ones((len(entities), len(entities)), dtype='bool')
|
753 |
-
# np.fill_diagonal(label_mask, 0) # ignore diagonals
|
754 |
-
|
755 |
-
# TODO: normalize ent_masks (test normalization vs. not)
|
756 |
-
# ent_masks = ent_masks / np.expand_dims(ent_masks.sum(1), axis=1)
|
757 |
-
|
758 |
self.features.append({
|
759 |
"input_ids": input_ids,
|
760 |
"ent_pos": ent_pos,
|
761 |
"labels": labels,
|
762 |
})
|
763 |
|
764 |
-
# self.features.append({
|
765 |
-
# "input_ids": input_ids,
|
766 |
-
# "ent_masks": ent_masks,
|
767 |
-
# "ent_ners": ent_ners,
|
768 |
-
# "labels": labels,
|
769 |
-
# "label_mask": label_mask
|
770 |
-
# })
|
771 |
-
|
772 |
logging.info(f"# of empty entity examples filtered: {num_empty_entity_examples}")
|
773 |
logging.info(f"# of empty label examples filtered: {num_empty_label_examples}")
|
774 |
logging.info(f"# of beyond-truncated-text labels filtered: {num_filtered_labels}")
|
@@ -779,30 +654,13 @@ class HanjaDataset(Dataset):
|
|
779 |
input_ids = [x["input_ids"] for x in samples]
|
780 |
|
781 |
ent_pos = [x["ent_pos"] for x in samples]
|
782 |
-
# max_ent_len = max([len(x["ent_pos"]) for x in samples])
|
783 |
-
# ent_masks = [F.pad(torch.from_numpy(x["ent_masks"]), \
|
784 |
-
# (0, 0, 0, max_ent_len-x["ent_masks"].shape[0])) for x in samples]
|
785 |
-
# ent_ners = [F.pad(torch.from_numpy(x["ent_ners"]), \
|
786 |
-
# (0, 0, 0, max_ent_len-x["ent_ners"].shape[0])) for x in samples]
|
787 |
-
|
788 |
labels = [x["labels"].view(-1, self.config.num_labels) for x in samples]
|
789 |
-
# labels = [F.pad(torch.from_numpy(x["labels"]), \
|
790 |
-
# (0, 0, 0, max_ent_len-x["labels"].shape[0], 0, max_ent_len-x["labels"].shape[1]), value=-100) for x in samples]
|
791 |
-
# label_mask = [F.pad(torch.from_numpy(x["label_mask"]), \
|
792 |
-
# (0, max_ent_len-x["label_mask"].shape[0], 0, max_ent_len-x["label_mask"].shape[1])) for x in samples]
|
793 |
-
|
794 |
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
795 |
-
# ent_masks = torch.stack(ent_masks, dim=0)
|
796 |
labels = torch.cat(labels, dim=0)
|
797 |
-
# labels = torch.stack(labels, dim=0)
|
798 |
-
# label_mask = torch.stack(label_mask, dim=0)
|
799 |
|
800 |
return {"input_ids": input_ids,
|
801 |
"ent_pos": ent_pos,
|
802 |
-
# "ent_masks": ent_masks,
|
803 |
-
# "ent_ners": ent_ners,
|
804 |
"labels": labels,
|
805 |
-
# "label_mask": label_mask,
|
806 |
}
|
807 |
|
808 |
def __len__(self):
|
|
|
3 |
import os.path as osp
|
4 |
import json
|
5 |
import numpy as np
|
|
|
6 |
|
7 |
import torch
|
8 |
import torch.nn.functional as F
|
|
|
239 |
# debug
|
240 |
for ent_k, ent_h in zip(ent_pos_kor, ent_pos_han):
|
241 |
assert len(ent_k) == len(ent_h)
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
|
244 |
### labels ###
|
|
|
253 |
if h_idx is None or t_idx is None:
|
254 |
num_filtered_labels += 1
|
255 |
continue
|
|
|
|
|
|
|
|
|
|
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
r_idx = self.label_map[relation["kor"]["label"]]
|
258 |
labels[h_idx, t_idx, r_idx] = 1
|
259 |
|
|
|
274 |
"text_han": ex["text"]["han"]
|
275 |
})
|
276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
logging.info(f"# of empty entity examples filtered: {num_empty_entity_examples}")
|
278 |
logging.info(f"# of empty label examples filtered: {num_empty_label_examples}")
|
279 |
logging.info(f"# of beyond-truncated-text labels filtered: {num_filtered_labels}")
|
|
|
334 |
self.split = split
|
335 |
self.features = []
|
336 |
|
|
|
|
|
337 |
self.save_dir = osp.join(args.data_dir, args.language)
|
338 |
self.save_path = osp.join(self.save_dir, f"{args.model_type}_{split}.pt")
|
339 |
os.makedirs(self.save_dir, exist_ok=True)
|
|
|
362 |
|
363 |
logging.info(f"Creating features from {self.args.data_dir}")
|
364 |
rootdir = osp.join(self.args.data_dir, f"{self.split}")
|
|
|
365 |
|
366 |
for json_file in tqdm(os.listdir(rootdir), desc="Converting examples to features"):
|
367 |
with open(osp.join(rootdir, json_file), encoding='utf-8') as f:
|
|
|
447 |
ent_pos[-1].append((token_start, token_end))
|
448 |
# ent_ner[-1].append(ment[-1])
|
449 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
### labels ###
|
451 |
labels = torch.zeros((len(entities), len(entities), self.config.num_labels), dtype=torch.float32)
|
452 |
for relation in ex["relation"]:
|
|
|
464 |
for t in range(len(entities)):
|
465 |
if torch.all(labels[h][t] == 0):
|
466 |
labels[h][t][0] = 1
|
467 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
self.features.append({
|
469 |
"input_ids": input_ids,
|
470 |
"ent_pos": ent_pos,
|
471 |
"labels": labels,
|
472 |
})
|
473 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
474 |
logging.info(f"# of empty entity examples filtered: {num_empty_entity_examples}")
|
475 |
logging.info(f"# of empty label examples filtered: {num_empty_label_examples}")
|
476 |
logging.info(f"# of beyond-truncated-text labels filtered: {num_filtered_labels}")
|
|
|
480 |
|
481 |
def collate_fn(self, samples):
|
482 |
input_ids = [x["input_ids"] for x in samples]
|
|
|
483 |
ent_pos = [x["ent_pos"] for x in samples]
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
labels = [x["labels"].view(-1, self.config.num_labels) for x in samples]
|
|
|
|
|
|
|
|
|
485 |
|
486 |
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
|
|
487 |
labels = torch.cat(labels, dim=0)
|
|
|
|
|
488 |
|
489 |
return {"input_ids": input_ids,
|
490 |
"ent_pos": ent_pos,
|
|
|
|
|
491 |
"labels": labels,
|
|
|
492 |
}
|
493 |
|
494 |
def __len__(self):
|
|
|
538 |
|
539 |
logging.info(f"Creating features from {self.args.data_dir}")
|
540 |
rootdir = osp.join(self.args.data_dir, f"{self.split}")
|
|
|
541 |
|
542 |
for json_file in tqdm(os.listdir(rootdir), desc="Converting examples to features"):
|
543 |
with open(osp.join(rootdir, json_file), encoding='utf-8') as f:
|
|
|
616 |
ent_pos, ent_ner = [], []
|
617 |
for ent in entities:
|
618 |
ent_pos.append([])
|
|
|
619 |
for ment in ent:
|
620 |
token_start, token_end = ment[3], ment[4]
|
621 |
ent_pos[-1].append((token_start, token_end))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
622 |
|
|
|
|
|
|
|
623 |
### labels ###
|
624 |
labels = torch.zeros((len(entities), len(entities), self.config.num_labels), dtype=torch.float32)
|
625 |
for relation in ex["relation"]:
|
|
|
638 |
if torch.all(labels[h][t] == 0):
|
639 |
labels[h][t][0] = 1
|
640 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
641 |
self.features.append({
|
642 |
"input_ids": input_ids,
|
643 |
"ent_pos": ent_pos,
|
644 |
"labels": labels,
|
645 |
})
|
646 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
647 |
logging.info(f"# of empty entity examples filtered: {num_empty_entity_examples}")
|
648 |
logging.info(f"# of empty label examples filtered: {num_empty_label_examples}")
|
649 |
logging.info(f"# of beyond-truncated-text labels filtered: {num_filtered_labels}")
|
|
|
654 |
input_ids = [x["input_ids"] for x in samples]
|
655 |
|
656 |
ent_pos = [x["ent_pos"] for x in samples]
|
|
|
|
|
|
|
|
|
|
|
|
|
657 |
labels = [x["labels"].view(-1, self.config.num_labels) for x in samples]
|
|
|
|
|
|
|
|
|
|
|
658 |
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
|
|
659 |
labels = torch.cat(labels, dim=0)
|
|
|
|
|
660 |
|
661 |
return {"input_ids": input_ids,
|
662 |
"ent_pos": ent_pos,
|
|
|
|
|
663 |
"labels": labels,
|
|
|
664 |
}
|
665 |
|
666 |
def __len__(self):
|