Create dataset.py
Browse files- dataset.py +812 -0
dataset.py
ADDED
@@ -0,0 +1,812 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import os.path as osp
|
4 |
+
import json
|
5 |
+
import numpy as np
|
6 |
+
# from konlpy.tag import Okt
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch.utils.data import Dataset, DataLoader
|
11 |
+
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
from utils import seed_worker
|
15 |
+
import pprint
|
16 |
+
|
17 |
+
|
18 |
+
def load_data(args,
|
19 |
+
config=None, config_kor=None, config_han=None,
|
20 |
+
tokenizer=None, tokenizer_kor=None, tokenizer_han=None,
|
21 |
+
split="train"):
|
22 |
+
|
23 |
+
if args.joint:
|
24 |
+
dataset = JointDataset(args, config_kor, config_han, tokenizer_kor, tokenizer_han, split)
|
25 |
+
|
26 |
+
else:
|
27 |
+
assert args.language in ['korean', 'hanja']
|
28 |
+
|
29 |
+
if args.language == 'korean':
|
30 |
+
dataset = KoreanDataset(args, config, tokenizer, split)
|
31 |
+
elif args.language == 'hanja':
|
32 |
+
dataset = HanjaDataset(args, config, tokenizer, split)
|
33 |
+
|
34 |
+
if split == "train":
|
35 |
+
dataloader = DataLoader(dataset,
|
36 |
+
batch_size=args.train_batch_size,
|
37 |
+
collate_fn=dataset.collate_fn,
|
38 |
+
worker_init_fn=seed_worker,
|
39 |
+
num_workers=args.num_workers,
|
40 |
+
shuffle=True,
|
41 |
+
drop_last=True,
|
42 |
+
pin_memory=True)
|
43 |
+
elif split == "valid":
|
44 |
+
dataloader = DataLoader(dataset,
|
45 |
+
batch_size=args.eval_batch_size,
|
46 |
+
collate_fn=dataset.collate_fn,
|
47 |
+
shuffle=False,
|
48 |
+
drop_last=False,
|
49 |
+
pin_memory=True)
|
50 |
+
elif split =="test":
|
51 |
+
dataloader = DataLoader(dataset,
|
52 |
+
batch_size=args.test_batch_size,
|
53 |
+
collate_fn=dataset.collate_fn,
|
54 |
+
shuffle=False,
|
55 |
+
drop_last=False)
|
56 |
+
else:
|
57 |
+
raise ValueError("Data split must be either train/valid/test.")
|
58 |
+
|
59 |
+
return dataloader
|
60 |
+
|
61 |
+
|
62 |
+
class JointDataset(Dataset):
|
63 |
+
|
64 |
+
def __init__(self, args, config_kor, config_han, tokenizer_kor, tokenizer_han, split="train"):
|
65 |
+
self.args = args
|
66 |
+
self.config_kor = config_kor
|
67 |
+
self.config_han = config_han
|
68 |
+
self.tokenizer_kor = tokenizer_kor
|
69 |
+
self.tokenizer_han = tokenizer_han
|
70 |
+
self.split = split
|
71 |
+
self.features = []
|
72 |
+
|
73 |
+
if args.add_emb:
|
74 |
+
self.save_dir = osp.join(args.data_dir, f"joint_add_{args.w_kor_emb}")
|
75 |
+
else:
|
76 |
+
self.save_dir = osp.join(args.data_dir, "joint_concat")
|
77 |
+
|
78 |
+
self.save_path = osp.join(self.save_dir, f"{args.model_type}+{args.model2_type}_{split}.pt")
|
79 |
+
os.makedirs(self.save_dir, exist_ok=True)
|
80 |
+
|
81 |
+
map_dir = '/'.join(args.data_dir.split('/')[:-1])
|
82 |
+
|
83 |
+
with open(osp.join(map_dir, "ner_map.json")) as f:
|
84 |
+
self.ner_map = json.load(f)
|
85 |
+
with open(osp.join(map_dir, "label_map.json")) as f:
|
86 |
+
self.label_map = json.load(f)
|
87 |
+
|
88 |
+
self.load_and_cache_examples()
|
89 |
+
|
90 |
+
|
91 |
+
def load_and_cache_examples(self):
|
92 |
+
if osp.exists(self.save_path):
|
93 |
+
logging.info(f"Loading features from {self.save_path}")
|
94 |
+
self.features = torch.load(self.save_path)
|
95 |
+
return
|
96 |
+
|
97 |
+
cls_token_kor = self.tokenizer_kor.cls_token
|
98 |
+
sep_token_kor = self.tokenizer_kor.sep_token
|
99 |
+
cls_token_han = self.tokenizer_han.cls_token
|
100 |
+
sep_token_han = self.tokenizer_han.sep_token
|
101 |
+
num_special_tokens = 2
|
102 |
+
num_empty_entity_examples = 0
|
103 |
+
num_empty_label_examples = 0
|
104 |
+
num_filtered_labels = 0
|
105 |
+
|
106 |
+
logging.info(f"Creating features from {self.args.data_dir}")
|
107 |
+
rootdir = osp.join(self.args.data_dir, f"{self.split}")
|
108 |
+
|
109 |
+
N_data_problems = 0
|
110 |
+
|
111 |
+
for json_file in tqdm(os.listdir(rootdir), desc="Converting examples to features"):
|
112 |
+
with open(osp.join(rootdir, json_file), encoding='utf-8') as f:
|
113 |
+
ex = json.load(f)
|
114 |
+
|
115 |
+
if len(ex["entity"]) == 0:
|
116 |
+
num_empty_entity_examples += 1
|
117 |
+
continue
|
118 |
+
|
119 |
+
if len(ex["relation"]) == 0:
|
120 |
+
num_empty_label_examples += 1
|
121 |
+
continue
|
122 |
+
|
123 |
+
### Tokenize text & cluster entity mentions ###
|
124 |
+
entities_kor = [] # list of lists clustering same entity mentions
|
125 |
+
entities_han = []
|
126 |
+
coref_dict_kor = {} # { coref_type: entity_idx } -> will be used to cluster mentions
|
127 |
+
coref_dict_han = {}
|
128 |
+
ent2idx_kor = {} # { info: entity_idx } -> map entity to idx
|
129 |
+
ent2idx_han = {}
|
130 |
+
ent_idx_kor = 0 # unique entity idx
|
131 |
+
ent_idx_han = 0
|
132 |
+
prev_idx_kor = 1 # skip cls_token idx
|
133 |
+
prev_idx_han = 1
|
134 |
+
input_tokens_kor = [cls_token_kor]
|
135 |
+
input_tokens_han = [cls_token_han]
|
136 |
+
long_seq = False
|
137 |
+
|
138 |
+
for ent in ex["entity"]:
|
139 |
+
if (ent["kor"]["type"] == "START" or ent["kor"]["text"] == "" or ent["kor"]["text"] == " " or
|
140 |
+
ent["han"]["type"] == "START" or ent["han"]["text"] == "" or ent["han"]["text"] == " "):
|
141 |
+
continue
|
142 |
+
|
143 |
+
if ent["han"]["coref_type"] != ent["kor"]["coref_type"]:
|
144 |
+
ent["han"]["coref_type"] = ent["kor"]["coref_type"]
|
145 |
+
# when tokenizing, make note of subword idxes
|
146 |
+
prev_text_kor = ex["text"]["kor"][prev_idx_kor:ent["kor"]["start"]]
|
147 |
+
prev_text_han = ex["text"]["han"][prev_idx_han:ent["han"]["start"]]
|
148 |
+
prev_tokens_kor = self.tokenizer_kor.tokenize(prev_text_kor)
|
149 |
+
prev_tokens_han = self.tokenizer_han.tokenize(prev_text_han)
|
150 |
+
input_tokens_kor += prev_tokens_kor
|
151 |
+
input_tokens_han += prev_tokens_han
|
152 |
+
start_kor = len(input_tokens_kor)
|
153 |
+
start_han = len(input_tokens_han)
|
154 |
+
ent_text_kor = ex["text"]["kor"][ent["kor"]["start"]:ent["kor"]["end"]]
|
155 |
+
ent_text_han = ex["text"]["han"][ent["han"]["start"]:ent["han"]["end"]]
|
156 |
+
ent_tokens_kor = self.tokenizer_kor.tokenize(ent_text_kor)
|
157 |
+
ent_tokens_han = self.tokenizer_han.tokenize(ent_text_han)
|
158 |
+
if self.args.mark_entities:
|
159 |
+
ent_tokens_kor = ["*"] + ent_tokens_kor + ["*"]
|
160 |
+
ent_tokens_han = ["*"] + ent_tokens_han + ["*"]
|
161 |
+
input_tokens_kor += ent_tokens_kor
|
162 |
+
input_tokens_han += ent_tokens_han
|
163 |
+
end_kor = len(input_tokens_kor)
|
164 |
+
end_han = len(input_tokens_han)
|
165 |
+
prev_idx_kor = ent["kor"]["end"]
|
166 |
+
prev_idx_han = ent["han"]["end"]
|
167 |
+
|
168 |
+
if (start_kor > self.args.max_seq_length-num_special_tokens or
|
169 |
+
end_kor > self.args.max_seq_length-num_special_tokens or
|
170 |
+
start_han > self.args.max_seq_length-num_special_tokens or
|
171 |
+
end_han > self.args.max_seq_length-num_special_tokens):
|
172 |
+
long_seq = True
|
173 |
+
break
|
174 |
+
|
175 |
+
ent_info_kor = (ent["kor"]["text"], ent["kor"]["start"], ent["kor"]["end"])
|
176 |
+
ent_info_han = (ent["han"]["text"], ent["han"]["start"], ent["han"]["end"])
|
177 |
+
full_ent_info_kor = (ent["kor"]["text"], ent["kor"]["start"], ent["kor"]["end"], start_kor, end_kor)
|
178 |
+
full_ent_info_han = (ent["han"]["text"], ent["han"]["start"], ent["han"]["end"], start_han, end_han)
|
179 |
+
|
180 |
+
if ent["kor"]["coref_type"]:
|
181 |
+
if ent["kor"]["coref_type"] in coref_dict_kor:
|
182 |
+
coref_idx = coref_dict_kor[ent["kor"]["coref_type"]]
|
183 |
+
ent2idx_kor[ent_info_kor] = coref_idx
|
184 |
+
entities_kor[coref_idx].append(full_ent_info_kor)
|
185 |
+
else:
|
186 |
+
coref_dict_kor[ent["kor"]["coref_type"]] = ent_idx_kor
|
187 |
+
ent2idx_kor[ent_info_kor] = ent_idx_kor
|
188 |
+
entities_kor.append([full_ent_info_kor])
|
189 |
+
ent_idx_kor += 1
|
190 |
+
else:
|
191 |
+
ent2idx_kor[ent_info_kor] = ent_idx_kor
|
192 |
+
entities_kor.append([full_ent_info_kor])
|
193 |
+
ent_idx_kor += 1
|
194 |
+
|
195 |
+
if ent["han"]["coref_type"]:
|
196 |
+
if ent["han"]["coref_type"] in coref_dict_han:
|
197 |
+
coref_idx = coref_dict_han[ent["han"]["coref_type"]]
|
198 |
+
ent2idx_han[ent_info_han] = coref_idx
|
199 |
+
entities_han[coref_idx].append(full_ent_info_han)
|
200 |
+
else:
|
201 |
+
coref_dict_han[ent["han"]["coref_type"]] = ent_idx_han
|
202 |
+
ent2idx_han[ent_info_han] = ent_idx_han
|
203 |
+
entities_han.append([full_ent_info_han])
|
204 |
+
ent_idx_han += 1
|
205 |
+
else:
|
206 |
+
ent2idx_han[ent_info_han] = ent_idx_han
|
207 |
+
entities_han.append([full_ent_info_han])
|
208 |
+
ent_idx_han += 1
|
209 |
+
|
210 |
+
if not long_seq:
|
211 |
+
remaining_text_kor = ex["text"]["kor"][prev_idx_kor:]
|
212 |
+
remaining_text_han = ex["text"]["han"][prev_idx_han:]
|
213 |
+
input_tokens_kor += self.tokenizer_kor.tokenize(remaining_text_kor)
|
214 |
+
input_tokens_han += self.tokenizer_han.tokenize(remaining_text_han)
|
215 |
+
input_tokens_kor = input_tokens_kor[:self.args.max_seq_length - 1]
|
216 |
+
input_tokens_han = input_tokens_han[:self.args.max_seq_length - 1]
|
217 |
+
input_tokens_kor += [sep_token_kor]
|
218 |
+
input_tokens_han += [sep_token_han]
|
219 |
+
input_ids_kor = self.tokenizer_kor.convert_tokens_to_ids(input_tokens_kor)
|
220 |
+
input_ids_han = self.tokenizer_han.convert_tokens_to_ids(input_tokens_han)
|
221 |
+
|
222 |
+
# Pad to max length
|
223 |
+
input_ids_kor += [self.config_kor.pad_token_id] * (self.args.max_seq_length - len(input_ids_kor))
|
224 |
+
input_ids_han += [self.config_han.pad_token_id] * (self.args.max_seq_length - len(input_ids_han))
|
225 |
+
assert len(input_ids_kor) == len(input_ids_han) == self.args.max_seq_length
|
226 |
+
|
227 |
+
### entity masks & NERs
|
228 |
+
ent_pos_kor, ent_pos_han = [], []
|
229 |
+
for ent in entities_kor:
|
230 |
+
ent_pos_kor.append([])
|
231 |
+
for ment in ent:
|
232 |
+
token_start, token_end = ment[3], ment[4]
|
233 |
+
ent_pos_kor[-1].append((token_start, token_end))
|
234 |
+
for ent in entities_han:
|
235 |
+
ent_pos_han.append([])
|
236 |
+
for ment in ent:
|
237 |
+
token_start, token_end = ment[3], ment[4]
|
238 |
+
ent_pos_han[-1].append((token_start, token_end))
|
239 |
+
|
240 |
+
# debug
|
241 |
+
for ent_k, ent_h in zip(ent_pos_kor, ent_pos_han):
|
242 |
+
assert len(ent_k) == len(ent_h)
|
243 |
+
# print(json_file)
|
244 |
+
# pprint.pprint(ex["entity"])
|
245 |
+
# print(entities_kor)
|
246 |
+
# print(entities_han)
|
247 |
+
# break
|
248 |
+
|
249 |
+
|
250 |
+
### labels ###
|
251 |
+
labels = torch.zeros((len(entities_kor), len(entities_kor), self.config_kor.num_labels), dtype=torch.float32)
|
252 |
+
for relation in ex["relation"]:
|
253 |
+
s1, o1 = relation["kor"]['subject_entity'], relation["kor"]['object_entity']
|
254 |
+
s2, o2 = relation["han"]['subject_entity'], relation["han"]['object_entity']
|
255 |
+
h_idx = ent2idx_kor.get((s1["text"], s1["start"], s1["end"]), None)
|
256 |
+
t_idx = ent2idx_kor.get((o1["text"], o1["start"], o1["end"]), None)
|
257 |
+
h_idx2 = ent2idx_han.get((s2["text"], s2["start"], s2["end"]), None)
|
258 |
+
t_idx2 = ent2idx_han.get((o2["text"], o2["start"], o2["end"]), None)
|
259 |
+
if h_idx is None or t_idx is None:
|
260 |
+
num_filtered_labels += 1
|
261 |
+
continue
|
262 |
+
|
263 |
+
# TODO: idx has to match across languages, otherwise the label won't be universal.
|
264 |
+
# if h_idx != h_idx2 or t_idx != t_idx2:
|
265 |
+
# import pdb; pdb.set_trace()
|
266 |
+
# assert h_idx == h_idx2 and t_idx == t_idx2
|
267 |
+
|
268 |
+
# debugging
|
269 |
+
if not( h_idx == h_idx2 and t_idx == t_idx2) :
|
270 |
+
# print(f"fname: {json_file}")
|
271 |
+
# pprint.pprint(relation)
|
272 |
+
N_data_problems += 1
|
273 |
+
continue
|
274 |
+
|
275 |
+
r_idx = self.label_map[relation["kor"]["label"]]
|
276 |
+
labels[h_idx, t_idx, r_idx] = 1
|
277 |
+
|
278 |
+
for h in range(len(entities_kor)):
|
279 |
+
for t in range(len(entities_kor)):
|
280 |
+
if torch.all(labels[h][t] == 0):
|
281 |
+
labels[h][t][0] = 1
|
282 |
+
|
283 |
+
self.features.append({
|
284 |
+
"input_ids_kor": input_ids_kor,
|
285 |
+
"input_ids_han": input_ids_han,
|
286 |
+
"ent_pos_kor": ent_pos_kor,
|
287 |
+
"ent_pos_han": ent_pos_han,
|
288 |
+
"labels": labels,
|
289 |
+
"entities_kor": entities_kor,
|
290 |
+
"entities_han": entities_han,
|
291 |
+
"text_kor": ex["text"]["kor"],
|
292 |
+
"text_han": ex["text"]["han"]
|
293 |
+
})
|
294 |
+
|
295 |
+
# self.features.append({
|
296 |
+
# "input_ids_kor": input_ids_kor,
|
297 |
+
# "input_ids_han": input_ids_han,
|
298 |
+
# "ent_pos_kor": ent_pos_kor,
|
299 |
+
# "ent_pos_han": ent_pos_han,
|
300 |
+
# "labels": labels
|
301 |
+
# })
|
302 |
+
|
303 |
+
print(f"# problems in (h_idx == h_idx2 and t_idx == t_idx2) : {N_data_problems}")
|
304 |
+
|
305 |
+
logging.info(f"# of empty entity examples filtered: {num_empty_entity_examples}")
|
306 |
+
logging.info(f"# of empty label examples filtered: {num_empty_label_examples}")
|
307 |
+
logging.info(f"# of beyond-truncated-text labels filtered: {num_filtered_labels}")
|
308 |
+
logging.info(f"Saving features to {self.save_path}")
|
309 |
+
torch.save(self.features, self.save_path)
|
310 |
+
|
311 |
+
|
312 |
+
def collate_fn(self, samples):
|
313 |
+
input_ids_kor = [x["input_ids_kor"] for x in samples]
|
314 |
+
input_ids_han = [x["input_ids_han"] for x in samples]
|
315 |
+
ent_pos_kor = [x["ent_pos_kor"] for x in samples]
|
316 |
+
ent_pos_han = [x["ent_pos_han"] for x in samples]
|
317 |
+
labels = [x["labels"].view(-1, self.config_kor.num_labels) for x in samples]
|
318 |
+
|
319 |
+
input_ids_kor = torch.tensor(input_ids_kor, dtype=torch.long)
|
320 |
+
input_ids_han = torch.tensor(input_ids_han, dtype=torch.long)
|
321 |
+
labels = torch.cat(labels, dim=0)
|
322 |
+
|
323 |
+
if not self.args.do_analysis:
|
324 |
+
return {"input_ids_kor": input_ids_kor,
|
325 |
+
"input_ids_han": input_ids_han,
|
326 |
+
"ent_pos_kor": ent_pos_kor,
|
327 |
+
"ent_pos_han": ent_pos_han,
|
328 |
+
"labels": labels}
|
329 |
+
|
330 |
+
elif self.args.do_analysis:
|
331 |
+
|
332 |
+
entities_kor = [x["entities_kor"] for x in samples]
|
333 |
+
entities_han = [x["entities_han"] for x in samples]
|
334 |
+
text_kor = [x["text_kor"] for x in samples]
|
335 |
+
text_han = [x["text_han"] for x in samples]
|
336 |
+
|
337 |
+
return {"input_ids_kor": input_ids_kor,
|
338 |
+
"input_ids_han": input_ids_han,
|
339 |
+
"ent_pos_kor": ent_pos_kor,
|
340 |
+
"ent_pos_han": ent_pos_han,
|
341 |
+
"labels": labels,
|
342 |
+
"entities_kor": entities_kor,
|
343 |
+
"entities_han": entities_han,
|
344 |
+
"text_kor": text_kor,
|
345 |
+
"text_han": text_han
|
346 |
+
}
|
347 |
+
|
348 |
+
|
349 |
+
def __len__(self):
|
350 |
+
return len(self.features)
|
351 |
+
|
352 |
+
def __getitem__(self, idx):
|
353 |
+
return self.features[idx]
|
354 |
+
|
355 |
+
|
356 |
+
class KoreanDataset(Dataset):
|
357 |
+
|
358 |
+
def __init__(self, args, config, tokenizer, split="train"):
|
359 |
+
self.args = args
|
360 |
+
self.config = config
|
361 |
+
self.tokenizer = tokenizer
|
362 |
+
self.split = split
|
363 |
+
self.features = []
|
364 |
+
|
365 |
+
# self.word_tokenizer = Okt()
|
366 |
+
|
367 |
+
self.save_dir = osp.join(args.data_dir, args.language)
|
368 |
+
self.save_path = osp.join(self.save_dir, f"{args.model_type}_{split}.pt")
|
369 |
+
os.makedirs(self.save_dir, exist_ok=True)
|
370 |
+
|
371 |
+
map_dir = '/'.join(args.data_dir.split('/')[:-1])
|
372 |
+
|
373 |
+
with open(osp.join(map_dir, "ner_map.json")) as f:
|
374 |
+
self.ner_map = json.load(f)
|
375 |
+
with open(osp.join(map_dir, "label_map.json")) as f:
|
376 |
+
self.label_map = json.load(f)
|
377 |
+
|
378 |
+
self.load_and_cache_examples()
|
379 |
+
|
380 |
+
def load_and_cache_examples(self):
|
381 |
+
if osp.exists(self.save_path):
|
382 |
+
logging.info(f"Loading features from {self.save_path}")
|
383 |
+
self.features = torch.load(self.save_path)
|
384 |
+
return
|
385 |
+
|
386 |
+
cls_token = self.tokenizer.cls_token
|
387 |
+
sep_token = self.tokenizer.sep_token
|
388 |
+
num_special_tokens = 2
|
389 |
+
num_empty_entity_examples = 0
|
390 |
+
num_empty_label_examples = 0
|
391 |
+
num_filtered_labels = 0
|
392 |
+
|
393 |
+
logging.info(f"Creating features from {self.args.data_dir}")
|
394 |
+
rootdir = osp.join(self.args.data_dir, f"{self.split}")
|
395 |
+
# print(f"Current directory: {rootdir}")
|
396 |
+
|
397 |
+
for json_file in tqdm(os.listdir(rootdir), desc="Converting examples to features"):
|
398 |
+
with open(osp.join(rootdir, json_file), encoding='utf-8') as f:
|
399 |
+
ex = json.load(f)
|
400 |
+
|
401 |
+
if len(ex["entity"]) == 0:
|
402 |
+
num_empty_entity_examples += 1
|
403 |
+
continue
|
404 |
+
|
405 |
+
if len(ex["relation"]) == 0:
|
406 |
+
num_empty_label_examples += 1
|
407 |
+
continue
|
408 |
+
|
409 |
+
### Tokenize text & cluster entity mentions ###
|
410 |
+
entities = [] # list of lists clustering same entity mentions
|
411 |
+
coref_dict = {} # { coref_type: entity_idx } -> will be used to cluster mentions
|
412 |
+
ent2idx = {} # { info: entity_idx } -> map entity to idx
|
413 |
+
ent_idx = 0 # unique entity idx
|
414 |
+
prev_idx = 1 # skip cls_token idx
|
415 |
+
input_tokens = [cls_token]
|
416 |
+
long_seq = False
|
417 |
+
|
418 |
+
for ent in ex["entity"]:
|
419 |
+
ent = ent['kor']
|
420 |
+
if ent["type"] == "START" or ent["text"] == "" or ent["text"] == " ":
|
421 |
+
continue
|
422 |
+
# when tokenizing, make note of subword idxes
|
423 |
+
prev_text = ex["text"]["kor"][prev_idx:ent["start"]]
|
424 |
+
prev_tokens = self.tokenizer.tokenize(prev_text)
|
425 |
+
input_tokens += prev_tokens
|
426 |
+
start = len(input_tokens)
|
427 |
+
ent_text = ex["text"]["kor"][ent["start"]:ent["end"]]
|
428 |
+
ent_tokens = self.tokenizer.tokenize(ent_text)
|
429 |
+
if self.args.mark_entities:
|
430 |
+
ent_tokens = ["*"] + ent_tokens + ["*"]
|
431 |
+
input_tokens += ent_tokens
|
432 |
+
end = len(input_tokens)
|
433 |
+
prev_idx = ent["end"]
|
434 |
+
|
435 |
+
# Skip entity mentions that appear beyond the truncated text
|
436 |
+
if (start > self.args.max_seq_length-num_special_tokens or
|
437 |
+
end > self.args.max_seq_length-num_special_tokens):
|
438 |
+
long_seq = True
|
439 |
+
break
|
440 |
+
|
441 |
+
# this tuple will be used to identify entity
|
442 |
+
ent_info = (ent["text"], ent["start"], ent["end"], ent["type"])
|
443 |
+
full_ent_info = (ent["text"], ent["start"], ent["end"], start, end, ent["type"])
|
444 |
+
|
445 |
+
if ent["coref_type"]:
|
446 |
+
if ent["coref_type"] in coref_dict:
|
447 |
+
coref_idx = coref_dict[ent["coref_type"]]
|
448 |
+
ent2idx[ent_info] = coref_idx
|
449 |
+
entities[coref_idx].append(full_ent_info)
|
450 |
+
else:
|
451 |
+
coref_dict[ent["coref_type"]] = ent_idx
|
452 |
+
ent2idx[ent_info] = ent_idx
|
453 |
+
entities.append([full_ent_info])
|
454 |
+
ent_idx += 1
|
455 |
+
else:
|
456 |
+
ent2idx[ent_info] = ent_idx
|
457 |
+
entities.append([full_ent_info])
|
458 |
+
ent_idx += 1
|
459 |
+
|
460 |
+
if not long_seq:
|
461 |
+
remaining_text = ex["text"]["kor"][prev_idx:]
|
462 |
+
input_tokens += self.tokenizer.tokenize(remaining_text)
|
463 |
+
input_tokens = input_tokens[:self.args.max_seq_length - 1] # truncation
|
464 |
+
input_tokens += [sep_token]
|
465 |
+
input_ids = self.tokenizer.convert_tokens_to_ids(input_tokens)
|
466 |
+
|
467 |
+
# Pad to max length to enable sparse attention in bigbird
|
468 |
+
input_ids += [self.config.pad_token_id] * (self.args.max_seq_length - len(input_ids))
|
469 |
+
assert len(input_ids) == self.args.max_seq_length
|
470 |
+
|
471 |
+
### entity masks & NERs
|
472 |
+
ent_pos, ent_ner = [], []
|
473 |
+
for ent in entities:
|
474 |
+
ent_pos.append([])
|
475 |
+
# ent_ner.append([])
|
476 |
+
for ment in ent:
|
477 |
+
token_start, token_end = ment[3], ment[4]
|
478 |
+
ent_pos[-1].append((token_start, token_end))
|
479 |
+
# ent_ner[-1].append(ment[-1])
|
480 |
+
|
481 |
+
# ent_masks, ent_ners = [], []
|
482 |
+
# for ent in entities:
|
483 |
+
# ent_mask = np.zeros(len(input_ids), dtype=np.float32)
|
484 |
+
# ent_ner = np.zeros(len(input_ids), dtype=np.float32)
|
485 |
+
|
486 |
+
# for ment in ent:
|
487 |
+
# start, end = ment[3], ment[4]
|
488 |
+
# # Skip entity mentions that appear beyond the truncated text
|
489 |
+
# if (start > self.args.max_seq_length-num_special_tokens or
|
490 |
+
# end > self.args.max_seq_length-num_special_tokens):
|
491 |
+
# continue
|
492 |
+
# ent_mask[start:end] = 1
|
493 |
+
# ent_ner[start:end] = self.ner_map[ment[5]]
|
494 |
+
|
495 |
+
# assert ent_mask.sum() != 0
|
496 |
+
|
497 |
+
# ent_masks.append(ent_mask)
|
498 |
+
# ent_ners.append(ent_ner)
|
499 |
+
|
500 |
+
# ent_masks = np.stack(ent_masks, axis=0)
|
501 |
+
# ent_ners = np.stack(ent_ners, axis=0)
|
502 |
+
|
503 |
+
### labels ###
|
504 |
+
labels = torch.zeros((len(entities), len(entities), self.config.num_labels), dtype=torch.float32)
|
505 |
+
for relation in ex["relation"]:
|
506 |
+
relation = relation['kor']
|
507 |
+
s, o = relation['subject_entity'], relation['object_entity']
|
508 |
+
h_idx = ent2idx.get((s["text"], s["start"], s["end"], s["type"]), None)
|
509 |
+
t_idx = ent2idx.get((o["text"], o["start"], o["end"], o["type"]), None)
|
510 |
+
if h_idx is None or t_idx is None:
|
511 |
+
num_filtered_labels += 1
|
512 |
+
continue
|
513 |
+
r_idx = self.label_map[relation["label"]]
|
514 |
+
labels[h_idx, t_idx, r_idx] = 1
|
515 |
+
|
516 |
+
for h in range(len(entities)):
|
517 |
+
for t in range(len(entities)):
|
518 |
+
if torch.all(labels[h][t] == 0):
|
519 |
+
labels[h][t][0] = 1
|
520 |
+
|
521 |
+
### label mask ###
|
522 |
+
# label_mask = np.ones((len(entities), len(entities)), dtype='bool')
|
523 |
+
# np.fill_diagonal(label_mask, 0) # ignore diagonals
|
524 |
+
|
525 |
+
# TODO: normalize ent_masks (test normalization vs. not)
|
526 |
+
# ent_masks = ent_masks / np.expand_dims(ent_masks.sum(1), axis=1)
|
527 |
+
|
528 |
+
self.features.append({
|
529 |
+
"input_ids": input_ids,
|
530 |
+
"ent_pos": ent_pos,
|
531 |
+
"labels": labels,
|
532 |
+
})
|
533 |
+
|
534 |
+
# self.features.append({
|
535 |
+
# "input_ids": input_ids,
|
536 |
+
# "ent_masks": ent_masks,
|
537 |
+
# "ent_ners": ent_ners,
|
538 |
+
# "labels": labels,
|
539 |
+
# "label_mask": label_mask
|
540 |
+
# })
|
541 |
+
|
542 |
+
logging.info(f"# of empty entity examples filtered: {num_empty_entity_examples}")
|
543 |
+
logging.info(f"# of empty label examples filtered: {num_empty_label_examples}")
|
544 |
+
logging.info(f"# of beyond-truncated-text labels filtered: {num_filtered_labels}")
|
545 |
+
logging.info(f"Saving features to {self.save_path}")
|
546 |
+
torch.save(self.features, self.save_path)
|
547 |
+
|
548 |
+
|
549 |
+
def collate_fn(self, samples):
|
550 |
+
input_ids = [x["input_ids"] for x in samples]
|
551 |
+
|
552 |
+
ent_pos = [x["ent_pos"] for x in samples]
|
553 |
+
# max_ent_len = max([len(x["ent_pos"]) for x in samples])
|
554 |
+
# ent_masks = [F.pad(torch.from_numpy(x["ent_masks"]), \
|
555 |
+
# (0, 0, 0, max_ent_len-x["ent_masks"].shape[0])) for x in samples]
|
556 |
+
# ent_ners = [F.pad(torch.from_numpy(x["ent_ners"]), \
|
557 |
+
# (0, 0, 0, max_ent_len-x["ent_ners"].shape[0])) for x in samples]
|
558 |
+
|
559 |
+
labels = [x["labels"].view(-1, self.config.num_labels) for x in samples]
|
560 |
+
# labels = [F.pad(torch.from_numpy(x["labels"]), \
|
561 |
+
# (0, 0, 0, max_ent_len-x["labels"].shape[0], 0, max_ent_len-x["labels"].shape[1]), value=-100) for x in samples]
|
562 |
+
# label_mask = [F.pad(torch.from_numpy(x["label_mask"]), \
|
563 |
+
# (0, max_ent_len-x["label_mask"].shape[0], 0, max_ent_len-x["label_mask"].shape[1])) for x in samples]
|
564 |
+
|
565 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
566 |
+
# ent_masks = torch.stack(ent_masks, dim=0)
|
567 |
+
labels = torch.cat(labels, dim=0)
|
568 |
+
# labels = torch.stack(labels, dim=0)
|
569 |
+
# label_mask = torch.stack(label_mask, dim=0)
|
570 |
+
|
571 |
+
return {"input_ids": input_ids,
|
572 |
+
"ent_pos": ent_pos,
|
573 |
+
# "ent_masks": ent_masks,
|
574 |
+
# "ent_ners": ent_ners,
|
575 |
+
"labels": labels,
|
576 |
+
# "label_mask": label_mask,
|
577 |
+
}
|
578 |
+
|
579 |
+
def __len__(self):
|
580 |
+
return len(self.features)
|
581 |
+
|
582 |
+
def __getitem__(self, idx):
|
583 |
+
return self.features[idx]
|
584 |
+
|
585 |
+
|
586 |
+
|
587 |
+
class HanjaDataset(Dataset):
|
588 |
+
|
589 |
+
def __init__(self, args, config, tokenizer, split="train"):
|
590 |
+
self.args = args
|
591 |
+
self.config = config
|
592 |
+
self.tokenizer = tokenizer
|
593 |
+
self.split = split
|
594 |
+
self.features = []
|
595 |
+
|
596 |
+
self.save_dir = osp.join(args.data_dir, args.language)
|
597 |
+
self.save_path = osp.join(self.save_dir, f"{args.model_type}_{split}.pt")
|
598 |
+
os.makedirs(self.save_dir, exist_ok=True)
|
599 |
+
|
600 |
+
|
601 |
+
map_dir = '/'.join(args.data_dir.split('/')[:-1])
|
602 |
+
|
603 |
+
with open(osp.join(map_dir, "ner_map.json")) as f:
|
604 |
+
self.ner_map = json.load(f)
|
605 |
+
with open(osp.join(map_dir, "label_map.json")) as f:
|
606 |
+
self.label_map = json.load(f)
|
607 |
+
|
608 |
+
self.load_and_cache_examples()
|
609 |
+
|
610 |
+
|
611 |
+
def load_and_cache_examples(self):
|
612 |
+
if osp.exists(self.save_path):
|
613 |
+
logging.info(f"Loading features from {self.save_path}")
|
614 |
+
self.features = torch.load(self.save_path)
|
615 |
+
return
|
616 |
+
|
617 |
+
cls_token = self.tokenizer.cls_token
|
618 |
+
sep_token = self.tokenizer.sep_token
|
619 |
+
num_special_tokens = 2
|
620 |
+
num_empty_entity_examples = 0
|
621 |
+
num_empty_label_examples = 0
|
622 |
+
num_filtered_labels = 0
|
623 |
+
|
624 |
+
logging.info(f"Creating features from {self.args.data_dir}")
|
625 |
+
rootdir = osp.join(self.args.data_dir, f"{self.split}")
|
626 |
+
# print(f"Current directory: {rootdir}")
|
627 |
+
|
628 |
+
for json_file in tqdm(os.listdir(rootdir), desc="Converting examples to features"):
|
629 |
+
with open(osp.join(rootdir, json_file), encoding='utf-8') as f:
|
630 |
+
ex = json.load(f)
|
631 |
+
|
632 |
+
if len(ex["entity"]) == 0:
|
633 |
+
num_empty_entity_examples += 1
|
634 |
+
continue
|
635 |
+
|
636 |
+
if len(ex["relation"]) == 0:
|
637 |
+
num_empty_label_examples += 1
|
638 |
+
continue
|
639 |
+
### Tokenize text & cluster entity mentions ###
|
640 |
+
entities = [] # list of lists clustering same entity mentions
|
641 |
+
coref_dict = {} # { coref_type: entity_idx } -> will be used to cluster mentions
|
642 |
+
ent2idx = {} # { info: entity_idx } -> map entity to idx
|
643 |
+
ent_idx = 0 # unique entity idx
|
644 |
+
prev_idx = 1 # skip cls_token idx
|
645 |
+
input_tokens = [cls_token]
|
646 |
+
long_seq = False
|
647 |
+
|
648 |
+
for ent in ex["entity"]:
|
649 |
+
ent = ent['han']
|
650 |
+
if ent["type"] == "START" or ent["text"] == "" or ent["text"] == " ":
|
651 |
+
continue
|
652 |
+
# when tokenizing, make note of subword idxes
|
653 |
+
prev_text = ex["text"]['han'][prev_idx:ent["start"]]
|
654 |
+
prev_tokens = self.tokenizer.tokenize(prev_text)
|
655 |
+
input_tokens += prev_tokens
|
656 |
+
start = len(input_tokens)
|
657 |
+
ent_text = ex["text"]['han'][ent["start"]:ent["end"]]
|
658 |
+
ent_tokens = self.tokenizer.tokenize(ent_text)
|
659 |
+
if self.args.mark_entities:
|
660 |
+
ent_tokens = ["*"] + ent_tokens + ["*"]
|
661 |
+
input_tokens += ent_tokens
|
662 |
+
end = len(input_tokens)
|
663 |
+
prev_idx = ent["end"]
|
664 |
+
|
665 |
+
# Skip entity mentions that appear beyond the truncated text
|
666 |
+
if (start > self.args.max_seq_length-num_special_tokens or
|
667 |
+
end > self.args.max_seq_length-num_special_tokens):
|
668 |
+
long_seq = True
|
669 |
+
break
|
670 |
+
|
671 |
+
# this tuple will be used to identify entity
|
672 |
+
ent_info = (ent["text"], ent["start"], ent["end"], ent["type"])
|
673 |
+
full_ent_info = (ent["text"], ent["start"], ent["end"], start, end, ent["type"])
|
674 |
+
|
675 |
+
if ent["coref_type"]:
|
676 |
+
if ent["coref_type"] in coref_dict:
|
677 |
+
coref_idx = coref_dict[ent["coref_type"]]
|
678 |
+
ent2idx[ent_info] = coref_idx
|
679 |
+
entities[coref_idx].append(full_ent_info)
|
680 |
+
else:
|
681 |
+
coref_dict[ent["coref_type"]] = ent_idx
|
682 |
+
ent2idx[ent_info] = ent_idx
|
683 |
+
entities.append([full_ent_info])
|
684 |
+
ent_idx += 1
|
685 |
+
else:
|
686 |
+
ent2idx[ent_info] = ent_idx
|
687 |
+
entities.append([full_ent_info])
|
688 |
+
ent_idx += 1
|
689 |
+
|
690 |
+
if not long_seq:
|
691 |
+
remaining_text = ex["text"]['han'][prev_idx:]
|
692 |
+
input_tokens += self.tokenizer.tokenize(remaining_text)
|
693 |
+
input_tokens = input_tokens[:self.args.max_seq_length - 1] # truncation
|
694 |
+
input_tokens += [sep_token]
|
695 |
+
input_ids = self.tokenizer.convert_tokens_to_ids(input_tokens)
|
696 |
+
|
697 |
+
# Pad to max length to enable sparse attention in bigbird
|
698 |
+
input_ids += [self.config.pad_token_id] * (self.args.max_seq_length - len(input_ids))
|
699 |
+
assert len(input_ids) == self.args.max_seq_length
|
700 |
+
|
701 |
+
### entity masks & NERs
|
702 |
+
ent_pos, ent_ner = [], []
|
703 |
+
for ent in entities:
|
704 |
+
ent_pos.append([])
|
705 |
+
# ent_ner.append([])
|
706 |
+
for ment in ent:
|
707 |
+
token_start, token_end = ment[3], ment[4]
|
708 |
+
ent_pos[-1].append((token_start, token_end))
|
709 |
+
# ent_ner[-1].append(ment[-1])
|
710 |
+
|
711 |
+
# ent_masks, ent_ners = [], []
|
712 |
+
# for ent in entities:
|
713 |
+
# ent_mask = np.zeros(len(input_ids), dtype=np.float32)
|
714 |
+
# ent_ner = np.zeros(len(input_ids), dtype=np.float32)
|
715 |
+
|
716 |
+
# for ment in ent:
|
717 |
+
# start, end = ment[3], ment[4]
|
718 |
+
# # Skip entity mentions that appear beyond the truncated text
|
719 |
+
# if (start > self.args.max_seq_length-num_special_tokens or
|
720 |
+
# end > self.args.max_seq_length-num_special_tokens):
|
721 |
+
# continue
|
722 |
+
# ent_mask[start:end] = 1
|
723 |
+
# ent_ner[start:end] = self.ner_map[ment[5]]
|
724 |
+
|
725 |
+
# assert ent_mask.sum() != 0
|
726 |
+
|
727 |
+
# ent_masks.append(ent_mask)
|
728 |
+
# ent_ners.append(ent_ner)
|
729 |
+
|
730 |
+
# ent_masks = np.stack(ent_masks, axis=0)
|
731 |
+
# ent_ners = np.stack(ent_ners, axis=0)
|
732 |
+
|
733 |
+
### labels ###
|
734 |
+
labels = torch.zeros((len(entities), len(entities), self.config.num_labels), dtype=torch.float32)
|
735 |
+
for relation in ex["relation"]:
|
736 |
+
r_idx = self.label_map[relation["label"]]
|
737 |
+
relation = relation['han']
|
738 |
+
s, o = relation['subject_entity'], relation['object_entity']
|
739 |
+
h_idx = ent2idx.get((s["text"], s["start"], s["end"], s["type"]), None)
|
740 |
+
t_idx = ent2idx.get((o["text"], o["start"], o["end"], o["type"]), None)
|
741 |
+
if h_idx is None or t_idx is None:
|
742 |
+
num_filtered_labels += 1
|
743 |
+
continue
|
744 |
+
labels[h_idx, t_idx, r_idx] = 1
|
745 |
+
|
746 |
+
for h in range(len(entities)):
|
747 |
+
for t in range(len(entities)):
|
748 |
+
if torch.all(labels[h][t] == 0):
|
749 |
+
labels[h][t][0] = 1
|
750 |
+
|
751 |
+
### label mask ###
|
752 |
+
# label_mask = np.ones((len(entities), len(entities)), dtype='bool')
|
753 |
+
# np.fill_diagonal(label_mask, 0) # ignore diagonals
|
754 |
+
|
755 |
+
# TODO: normalize ent_masks (test normalization vs. not)
|
756 |
+
# ent_masks = ent_masks / np.expand_dims(ent_masks.sum(1), axis=1)
|
757 |
+
|
758 |
+
self.features.append({
|
759 |
+
"input_ids": input_ids,
|
760 |
+
"ent_pos": ent_pos,
|
761 |
+
"labels": labels,
|
762 |
+
})
|
763 |
+
|
764 |
+
# self.features.append({
|
765 |
+
# "input_ids": input_ids,
|
766 |
+
# "ent_masks": ent_masks,
|
767 |
+
# "ent_ners": ent_ners,
|
768 |
+
# "labels": labels,
|
769 |
+
# "label_mask": label_mask
|
770 |
+
# })
|
771 |
+
|
772 |
+
logging.info(f"# of empty entity examples filtered: {num_empty_entity_examples}")
|
773 |
+
logging.info(f"# of empty label examples filtered: {num_empty_label_examples}")
|
774 |
+
logging.info(f"# of beyond-truncated-text labels filtered: {num_filtered_labels}")
|
775 |
+
logging.info(f"Saving features to {self.save_path}")
|
776 |
+
torch.save(self.features, self.save_path)
|
777 |
+
|
778 |
+
def collate_fn(self, samples):
|
779 |
+
input_ids = [x["input_ids"] for x in samples]
|
780 |
+
|
781 |
+
ent_pos = [x["ent_pos"] for x in samples]
|
782 |
+
# max_ent_len = max([len(x["ent_pos"]) for x in samples])
|
783 |
+
# ent_masks = [F.pad(torch.from_numpy(x["ent_masks"]), \
|
784 |
+
# (0, 0, 0, max_ent_len-x["ent_masks"].shape[0])) for x in samples]
|
785 |
+
# ent_ners = [F.pad(torch.from_numpy(x["ent_ners"]), \
|
786 |
+
# (0, 0, 0, max_ent_len-x["ent_ners"].shape[0])) for x in samples]
|
787 |
+
|
788 |
+
labels = [x["labels"].view(-1, self.config.num_labels) for x in samples]
|
789 |
+
# labels = [F.pad(torch.from_numpy(x["labels"]), \
|
790 |
+
# (0, 0, 0, max_ent_len-x["labels"].shape[0], 0, max_ent_len-x["labels"].shape[1]), value=-100) for x in samples]
|
791 |
+
# label_mask = [F.pad(torch.from_numpy(x["label_mask"]), \
|
792 |
+
# (0, max_ent_len-x["label_mask"].shape[0], 0, max_ent_len-x["label_mask"].shape[1])) for x in samples]
|
793 |
+
|
794 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
795 |
+
# ent_masks = torch.stack(ent_masks, dim=0)
|
796 |
+
labels = torch.cat(labels, dim=0)
|
797 |
+
# labels = torch.stack(labels, dim=0)
|
798 |
+
# label_mask = torch.stack(label_mask, dim=0)
|
799 |
+
|
800 |
+
return {"input_ids": input_ids,
|
801 |
+
"ent_pos": ent_pos,
|
802 |
+
# "ent_masks": ent_masks,
|
803 |
+
# "ent_ners": ent_ners,
|
804 |
+
"labels": labels,
|
805 |
+
# "label_mask": label_mask,
|
806 |
+
}
|
807 |
+
|
808 |
+
def __len__(self):
|
809 |
+
return len(self.features)
|
810 |
+
|
811 |
+
def __getitem__(self, idx):
|
812 |
+
return self.features[idx]
|