File size: 7,894 Bytes
1b37e28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The SocialGrep dataset loader base."""
import csv
import os
import datasets
DATASET_NAME = "one-year-of-r-india"
DATASET_TITLE = "one-year-of-r-india"
DATASET_DESCRIPTION = """\
This corpus contains the complete data for the activity of the subreddit /r/India from Sep 30, 2020 to Sep 30, 2021.
"""
_HOMEPAGE = f"https://socialgrep.com/datasets/{DATASET_NAME}"
_LICENSE = "CC-BY v4.0"
URL_TEMPLATE = "https://exports.socialgrep.com/download/public/{dataset_file}.zip"
DATASET_FILE_TEMPLATE = "{dataset}-{type}.csv"
_DATASET_FILES = {
'posts': DATASET_FILE_TEMPLATE.format(dataset=DATASET_NAME, type="posts"),
'comments': DATASET_FILE_TEMPLATE.format(dataset=DATASET_NAME, type="comments"),
}
_CITATION = f"""\
@misc{{socialgrep:{DATASET_NAME},
title = {{{DATASET_TITLE}}},
author={{Lexyr Inc.
}},
year={{2022}}
}}
"""
class oneyearofrindia(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="posts", version=VERSION, description="The dataset posts."),
datasets.BuilderConfig(name="comments", version=VERSION, description="The dataset comments."),
]
def _info(self):
if self.config.name == "posts": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"type": datasets.Value("string"),
"id": datasets.Value("string"),
"subreddit.id": datasets.Value("string"),
"subreddit.name": datasets.Value("string"),
"subreddit.nsfw": datasets.Value("bool"),
"created_utc": datasets.Value("timestamp[s,tz=utc]"),
"permalink": datasets.Value("string"),
"domain": datasets.Value("string"),
"url": datasets.Value("string"),
"selftext": datasets.Value("large_string"),
"title": datasets.Value("string"),
"score": datasets.Value("int32"),
}
)
else: # This is an example to show how to have different features for "first_domain" and "second_domain"
features = datasets.Features(
{
"type": datasets.ClassLabel(num_classes=2, names=['post', 'comment']),
"id": datasets.Value("string"),
"subreddit.id": datasets.Value("string"),
"subreddit.name": datasets.Value("string"),
"subreddit.nsfw": datasets.Value("bool"),
"created_utc": datasets.Value("timestamp[s,tz=utc]"),
"permalink": datasets.Value("string"),
"body": datasets.Value("large_string"),
"sentiment": datasets.Value("float32"),
"score": datasets.Value("int32"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=DATASET_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
my_urls = [URL_TEMPLATE.format(dataset_file=_DATASET_FILES[self.config.name])]
data_dir = dl_manager.download_and_extract(my_urls)[0]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, _DATASET_FILES[self.config.name]),
"split": "train",
},
)
]
def _generate_examples(
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
""" Yields examples as (key, example) tuples. """
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
bool_cols = ["subreddit.nsfw"]
int_cols = ["score", "created_utc"]
float_cols = ["sentiment"]
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
for col in bool_cols:
if col in row:
if row[col]:
row[col] = (row[col] == "true")
else:
row[col] = None
for col in int_cols:
if col in row:
if row[col]:
row[col] = int(row[col])
else:
row[col] = None
for col in float_cols:
if col in row:
if row[col]:
row[col] = float(row[col])
else:
row[col] = None
if row["type"] == "post":
key = f"t3_{row['id']}"
if row["type"] == "comment":
key = f"t1_{row['id']}"
yield key, row
if __name__ == "__main__":
print("Please use the HuggingFace dataset library, or")
print("download from https://socialgrep.com/datasets.") |