Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 1,540 Bytes
1b0de99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6fcae0
 
 
 
 
1b0de99
90ed591
 
180ee2a
 
 
28a8c7e
 
 
180ee2a
 
 
 
 
 
90ed591
 
 
 
180ee2a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: dr8_id
    dtype: string
  splits:
  - name: train
    num_bytes: 955808117524.608
    num_examples: 8503519
  - name: test
    num_bytes: 9779283952.9
    num_examples: 86770
  - name: validation
    num_bytes: 9761016961.73
    num_examples: 86770
  download_size: 982502783801
  dataset_size: 975348418439.238
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
  - split: validation
    path: data/validation-*
license: cc-by-sa-4.0
tags:
- astronomy
size_categories:
- 1M<n<10M
---
# Galaxies for training astroPT

Here we have ~8.5 million galaxy cutouts from the [DESI legacy survey DR8](https://www.legacysurvey.org/dr8/description/).
The cut outs are 512x512 pixel jpg images centred on the galaxy source.

I've split away 1% of the images into a test set, and 1% into a validation set.
The remaining 98% of the images comprise the training set.

There is also accompanying metadata!
The metadata is in parquet format in the root dir of this repo. 
You can link the metadata with the galaxies via their dr8_id.

## Useful links

Models here: [https://huggingface.co/Smith42/astroPT](https://huggingface.co/Smith42/astroPT)

Code here: [https://github.com/smith42/astroPT](https://github.com/smith42/astroPT)

Upstream catalogue is [on Zenodo](https://zenodo.org/records/8360385) and paper describing the catalogue is available as [Walmsley+2023](https://doi.org/10.1093/mnras/stad2919).