File size: 1,792 Bytes
75f66e7
 
fc42a60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b95ec2
 
 
 
 
 
 
 
 
 
 
4e440b3
1b95ec2
 
 
 
 
 
 
 
 
4e440b3
 
 
 
 
1b95ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: mit
task_categories:
- text2text-generation
language:
- en
size_categories:
- n<1K
configs:
  - config_name: all
    data_files:
      - split: test
        path: simulbench_all.jsonl
  - config_name: hard
    data_files:
      - split: test
        path: simulbench_hard.jsonl
  - config_name: objective
    data_files:
      - split: test
        path: simulbench_objective.jsonl
  - config_name: subjective
    data_files:
      - split: test
        path: simulbench_subjective.jsonl
  - config_name: system
    data_files:
      - split: test
        path: simulbench_system.jsonl
  - config_name: tool
    data_files:
      - split: test
        path: simulbench_tool.jsonl
  - config_name: role
    data_files:
      - split: test
        path: simulbench_role.jsonl
---

## Dataset Formats
```jsonl
{
  "id": "...",
  "task_description": "...",
  "act": "..."
}
```

## Dataset Loading

The subsets for SimulBench can be loaded as follows:
```python
from dataset import load_dataset

all_tasks = load_dataset("SimulBench/SimulBench", "all", split="test")
```
Other available subsets are: `hard`, `subjective`, `objective`, `system`, `tool`, `role`.

## More Info

* [Paper](xxx)
* [Website](https://simulbench.github.io/)
* [Leaderboard & Data Explorer](https://huggingface.co/spaces/SimulBench/SimulBench)

## Acknowledgements

The simulation tasks are sourced from [Awesome ChatGPT Prompts](https://github.com/f/awesome-chatgpt-prompts) with modifications.

## Citation Information

```latex
@article{simulbench2024,
      title={SimulBench: Evaluating LLMs with Diverse Simulation Tasks}, 
      author={Qi Jia, Xiang Yue, Tianyu Zheng, Jie Huang, and Bill Yuchen Lin},
      year={2024},
      eprint={},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```