File size: 4,998 Bytes
50c21de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import string
import math
import random
import xml.etree.ElementTree as et
import jsonlines
import uuid
import pandas as pd

# set random seed for shuffling
random.seed(1)

# column names of the reference answers file
FILE_NUMBER_COL = 'file_number'
REFERENCE_ANSWER_COL = 'reference_answer'

# column names of the files with the data
QUESTION_COL = 'Frage'
ANSWER_COL = 'Antwort'
SCORE_COL = 'Score'
ERROR_CLASS_COL = 'Fehlerklasse'
FEEDBACK_COL = 'Feedback'

# labels for verification_feedback
CORRECT_LABEL = 'Correct'
PARTIALLY_CORRECT_LABEL = 'Partially correct'
INCORRECT_LABEL = 'Incorrect'

def convert_xlsx_to_jsonl(
    path_to_dataset,
    path_to_reference_answers_file,
    dir,
    filename,
    train_split=None):
    """
    Utility function used for conversion of .xlsx files from the dataset into JSON lines
    
    Params:
        path_to_dataset (string): path to the folder containing the dataset (in .xlsx format)
        path_to_reference_answers_file (string): path to the folder containing the reference answers (in .xlsx format)
        dir (string): name of the directory where the JSON lines file will be stored
        filename (string): name of the JSON lines file that will store the dataset
        train_split (float or None): if not None, defines which percentage of the dataset to use for the train and validation splits
    
    Returns:
        None: the file is saved JSON lines format in the specified location
    """
    def return_verification_feedback(score):
        if math.isclose(score, 1.0):
            return CORRECT_LABEL
        elif math.isclose(score, 0.0):
            return INCORRECT_LABEL
        else:
            return PARTIALLY_CORRECT_LABEL
    
    data = []
    
    # get reference answers from file
    reference_answers_df = pd.read_excel(path_to_reference_answers_file)
    # the keys of the dictionary are the number of the files padded with zeroes
    # so that it has two digits, and the values are the reference answers themselves
    reference_answers = {
        f'{row[FILE_NUMBER_COL]:02}': row[REFERENCE_ANSWER_COL].strip() 
        for _, row in reference_answers_df.iterrows()}
    
    # loop through all files in directory
    for f in os.listdir(path_to_dataset):
        if f.endswith('.xlsx'):
            # read file
            file_df = pd.read_excel(os.path.join(path_to_dataset, f))
            # get question
            question = file_df[QUESTION_COL].iat[0].strip()
            # get reference answer based on file name
            ref_answer = reference_answers[f.split('.')[0]]

            # loop through all rows and store the appropriate fields in a list
            for _, row in file_df.iterrows():
                response = row[ANSWER_COL].strip()
                score = float(row[SCORE_COL])
                feedback = str(row[FEEDBACK_COL]).strip()
                verification_feedback = return_verification_feedback(score)
                error_class = row[ERROR_CLASS_COL].strip()
                
                # create dictionary with the appropriate fields
                data.append({
                    'id': uuid.uuid4().hex, # generate unique id in HEX format
                    'question': question,
                    'reference_answer': ref_answer,
                    'provided_answer': response,
                    'answer_feedback': feedback,
                    'verification_feedback': verification_feedback,
                    'error_class': error_class,
                    'score': score
                })
   
    if not os.path.exists(dir):
        print('Creating directory where JSON file will be stored\n')
        os.makedirs(dir)
    
    if train_split is None:
        with jsonlines.open(f'{os.path.join(dir, filename)}.jsonl', 'w') as writer:
            writer.write_all(data)
    else:
        # shuffle data and divide it into train and validation splits
        random.shuffle(data)
        train_data = data[: int(train_split * (len(data) - 1))]
        val_data = data[int(train_split * (len(data) - 1)) :]

        # write JSON lines file with train data
        with jsonlines.open(f'{os.path.join(dir, filename)}-train.jsonl', 'w') as writer:
            writer.write_all(train_data)
        
        # write JSON lines file with validation data
        with jsonlines.open(f'{os.path.join(dir, filename)}-validation.jsonl', 'w') as writer:
            writer.write_all(val_data)

if __name__ == '__main__':
    # convert legal domain dataset (german) to JSON lines
    convert_xlsx_to_jsonl(
        'data/training', 'data/reference_answers.xlsx',
        'data/json', 'saf-legal-domain-german',
        train_split=0.8)

    convert_xlsx_to_jsonl(
        'data/unseen_answers', 'data/reference_answers.xlsx',
        'data/json', 'saf-legal-domain-german-unseen-answers')

    convert_xlsx_to_jsonl(
        'data/unseen_questions', 'data/reference_answers.xlsx',
        'data/json', 'saf-legal-domain-german-unseen-questions')