File size: 5,941 Bytes
297a502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""Ethos  dataset"""


import pandas as pd

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """
@misc{mollas2020ethos,
      title={ETHOS: an Online Hate Speech Detection Dataset},
      author={Ioannis Mollas and Zoe Chrysopoulou and Stamatis Karlos and Grigorios Tsoumakas},
      year={2020},
      eprint={2006.08328},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
 """

_DESCRIPTION = """

ETHOS: onlinE haTe speecH detectiOn dataSet. This repository contains a dataset for hate speech
detection on social media platforms, called Ethos. There are two variations of the dataset:

Ethos_Dataset_Binary: contains 998 comments in the dataset alongside with a label
about hate speech presence or absence. 565 of them do not contain hate speech,
while the rest of them, 433, contain.

Ethos_Dataset_Multi_Label: which contains 8 labels for the 433 comments with hate speech content.
These labels are violence (if it incites (1) or not (0) violence), directed_vs_general (if it is
directed to a person (1) or a group (0)), and 6 labels about the category of hate speech like,
gender, race, national_origin, disability, religion and sexual_orientation.
"""

_URL = "https://github.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset"


class EthosConfig(datasets.BuilderConfig):
    """BuilderConfig for Ethos."""

    def __init__(self, variation="binary", **kwargs):
        """Constructs an EthosDataset.

        Args:
        variation: can be binary or multilabel
        **kwargs: keyword arguments forwarded to super.
        """
        if variation.lower() == "binary":
            self.variation = "binary"
        elif variation.lower() == "multilabel":
            self.variation = "multilabel"
        else:
            logger.warning("Wrong variation. Could be either 'binary' or 'multilabel', using 'binary' instead.")
            self.variation = "binary"
        super(EthosConfig, self).__init__(**kwargs)


class Ethos(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIG_CLASS = EthosConfig

    BUILDER_CONFIGS = [
        EthosConfig(
            name="binary",
            version=datasets.Version("1.0.0", ""),
            description="Ethos Binary",
            variation="binary",
        ),
        EthosConfig(
            name="multilabel",
            version=datasets.Version("1.0.0", ""),
            description="Ethos Multi Label",
            variation="multilabel",
        ),
    ]

    def _info(self):
        if self.config.variation == "binary":
            f = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "label": datasets.features.ClassLabel(names=["no_hate_speech", "hate_speech"]),
                }
            )
        else:
            f = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "violence": datasets.ClassLabel(names=["not_violent", "violent"]),
                    "directed_vs_generalized": datasets.ClassLabel(names=["generalied", "directed"]),
                    "gender": datasets.ClassLabel(names=["false", "true"]),
                    "race": datasets.ClassLabel(names=["false", "true"]),
                    "national_origin": datasets.ClassLabel(names=["false", "true"]),
                    "disability": datasets.ClassLabel(names=["false", "true"]),
                    "religion": datasets.ClassLabel(names=["false", "true"]),
                    "sexual_orientation": datasets.ClassLabel(names=["false", "true"]),
                }
            )
        return datasets.DatasetInfo(
            features=f,
            supervised_keys=None,
            homepage="https://github.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset/tree/masterethos/ethos_data",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        if self.config.variation == "binary":
            url = {
                "train": "https://raw.githubusercontent.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset"
                "/master/ethos/ethos_data/Ethos_Dataset_Binary.csv"
            }
        else:
            url = {
                "train": "https://raw.githubusercontent.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset"
                "/master/ethos/ethos_data/Ethos_Dataset_Multi_Label.csv"
            }
        downloaded_files = dl_manager.download_and_extract(url)

        return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]})]

    def _generate_examples(self, filepath):
        """Yields examples."""

        data = pd.read_csv(filepath, delimiter=";")
        if self.config.variation == "binary":

            x = data["comment"].values
            y = [1 if i >= 0.5 else 0 for i in data["isHate"].values]
            class_names = ["no_hate_speech", "hate_speech"]
            for i in range(len(x)):
                _id = i
                yield _id, {"text": x[i], "label": class_names[y[i]]}
        else:
            x = data["comment"].values
            y_temp = data.loc[:, data.columns != "comment"].values
            y = []
            for yt in y_temp:
                yi = []
                for i in yt:
                    if i >= 0.5:
                        yi.append(int(1))
                    else:
                        yi.append(int(0))
                y.append(yi)
            for i in range(len(x)):
                _id = i
                yield _id, {
                    "text": x[i],
                    "violence": y[i][0],
                    "directed_vs_generalized": y[i][1],
                    "gender": y[i][2],
                    "race": y[i][3],
                    "national_origin": y[i][4],
                    "disability": y[i][5],
                    "religion": y[i][6],
                    "sexual_orientation": y[i][7],
                }