|
--- |
|
language: |
|
- afr |
|
- amh |
|
- arb |
|
- arq |
|
- ary |
|
- eng |
|
- es |
|
- hau |
|
- hin |
|
- ind |
|
- kin |
|
- mar |
|
- pan |
|
- tel |
|
dataset_info: |
|
- config_name: afr |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: test |
|
num_bytes: 65243 |
|
num_examples: 375 |
|
- name: dev |
|
num_bytes: 66249 |
|
num_examples: 375 |
|
download_size: 95864 |
|
dataset_size: 131492 |
|
- config_name: amh |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 209475 |
|
num_examples: 992 |
|
- name: test |
|
num_bytes: 36637 |
|
num_examples: 171 |
|
- name: dev |
|
num_bytes: 19498 |
|
num_examples: 95 |
|
download_size: 153682 |
|
dataset_size: 265610 |
|
- config_name: arb |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: test |
|
num_bytes: 110473 |
|
num_examples: 595 |
|
- name: dev |
|
num_bytes: 5846 |
|
num_examples: 32 |
|
download_size: 72348 |
|
dataset_size: 116319 |
|
- config_name: arq |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 170025 |
|
num_examples: 1261 |
|
- name: test |
|
num_bytes: 79323 |
|
num_examples: 583 |
|
- name: dev |
|
num_bytes: 12181 |
|
num_examples: 97 |
|
download_size: 149472 |
|
dataset_size: 261529 |
|
- config_name: ary |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 382561 |
|
num_examples: 924 |
|
- name: test |
|
num_bytes: 175568 |
|
num_examples: 426 |
|
- name: dev |
|
num_bytes: 27975 |
|
num_examples: 71 |
|
download_size: 274828 |
|
dataset_size: 586104 |
|
- config_name: eng |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 844975 |
|
num_examples: 5500 |
|
- name: test |
|
num_bytes: 374647 |
|
num_examples: 2600 |
|
- name: dev |
|
num_bytes: 36697 |
|
num_examples: 250 |
|
download_size: 868674 |
|
dataset_size: 1256319 |
|
- config_name: esp |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 316713 |
|
num_examples: 1562 |
|
- name: test |
|
num_bytes: 123222 |
|
num_examples: 600 |
|
- name: dev |
|
num_bytes: 28981 |
|
num_examples: 140 |
|
download_size: 323584 |
|
dataset_size: 468916 |
|
- config_name: hau |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 403474 |
|
num_examples: 1736 |
|
- name: test |
|
num_bytes: 142238 |
|
num_examples: 603 |
|
- name: dev |
|
num_bytes: 49236 |
|
num_examples: 212 |
|
download_size: 328542 |
|
dataset_size: 594948 |
|
- config_name: hin |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: test |
|
num_bytes: 377385 |
|
num_examples: 968 |
|
- name: dev |
|
num_bytes: 113047 |
|
num_examples: 288 |
|
download_size: 217493 |
|
dataset_size: 490432 |
|
- config_name: ind |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: test |
|
num_bytes: 68185 |
|
num_examples: 360 |
|
- name: dev |
|
num_bytes: 26579 |
|
num_examples: 144 |
|
download_size: 68263 |
|
dataset_size: 94764 |
|
- config_name: kin |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 234520 |
|
num_examples: 778 |
|
- name: test |
|
num_bytes: 67211 |
|
num_examples: 222 |
|
- name: dev |
|
num_bytes: 30758 |
|
num_examples: 102 |
|
download_size: 219256 |
|
dataset_size: 332489 |
|
- config_name: mar |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 555224 |
|
num_examples: 1155 |
|
- name: test |
|
num_bytes: 139343 |
|
num_examples: 298 |
|
- name: dev |
|
num_bytes: 146496 |
|
num_examples: 293 |
|
download_size: 381039 |
|
dataset_size: 841063 |
|
- config_name: pan |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: test |
|
num_bytes: 307401 |
|
num_examples: 634 |
|
- name: dev |
|
num_bytes: 117984 |
|
num_examples: 242 |
|
download_size: 166402 |
|
dataset_size: 425385 |
|
- config_name: tel |
|
features: |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: label |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 561688 |
|
num_examples: 1146 |
|
- name: test |
|
num_bytes: 145249 |
|
num_examples: 297 |
|
- name: dev |
|
num_bytes: 64775 |
|
num_examples: 130 |
|
download_size: 347275 |
|
dataset_size: 771712 |
|
configs: |
|
- config_name: afr |
|
data_files: |
|
- split: test |
|
path: afr/test-* |
|
- split: dev |
|
path: afr/dev-* |
|
- config_name: amh |
|
data_files: |
|
- split: train |
|
path: amh/train-* |
|
- split: test |
|
path: amh/test-* |
|
- split: dev |
|
path: amh/dev-* |
|
- config_name: arb |
|
data_files: |
|
- split: test |
|
path: arb/test-* |
|
- split: dev |
|
path: arb/dev-* |
|
- config_name: arq |
|
data_files: |
|
- split: train |
|
path: arq/train-* |
|
- split: test |
|
path: arq/test-* |
|
- split: dev |
|
path: arq/dev-* |
|
- config_name: ary |
|
data_files: |
|
- split: train |
|
path: ary/train-* |
|
- split: test |
|
path: ary/test-* |
|
- split: dev |
|
path: ary/dev-* |
|
- config_name: eng |
|
data_files: |
|
- split: train |
|
path: eng/train-* |
|
- split: test |
|
path: eng/test-* |
|
- split: dev |
|
path: eng/dev-* |
|
- config_name: esp |
|
data_files: |
|
- split: train |
|
path: esp/train-* |
|
- split: test |
|
path: esp/test-* |
|
- split: dev |
|
path: esp/dev-* |
|
- config_name: hau |
|
data_files: |
|
- split: train |
|
path: hau/train-* |
|
- split: test |
|
path: hau/test-* |
|
- split: dev |
|
path: hau/dev-* |
|
- config_name: hin |
|
data_files: |
|
- split: test |
|
path: hin/test-* |
|
- split: dev |
|
path: hin/dev-* |
|
- config_name: ind |
|
data_files: |
|
- split: test |
|
path: ind/test-* |
|
- split: dev |
|
path: ind/dev-* |
|
- config_name: kin |
|
data_files: |
|
- split: train |
|
path: kin/train-* |
|
- split: test |
|
path: kin/test-* |
|
- split: dev |
|
path: kin/dev-* |
|
- config_name: mar |
|
data_files: |
|
- split: train |
|
path: mar/train-* |
|
- split: test |
|
path: mar/test-* |
|
- split: dev |
|
path: mar/dev-* |
|
- config_name: pan |
|
data_files: |
|
- split: test |
|
path: pan/test-* |
|
- split: dev |
|
path: pan/dev-* |
|
- config_name: tel |
|
data_files: |
|
- split: train |
|
path: tel/train-* |
|
- split: test |
|
path: tel/test-* |
|
- split: dev |
|
path: tel/dev-* |
|
task_categories: |
|
- text-classification |
|
- sentence-similarity |
|
--- |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** https://github.com/semantic-textual-relatedness/Semantic_Relatedness_SemEval2024 |
|
- **Repository:** [GitHub](https://github.com/semantic-textual-relatedness/Semantic_Relatedness_SemEval2024) |
|
- **Paper:** [SemRel2024: A Collection of Semantic Textual Relatedness Datasets for 14 Languages](https://arxiv.org/abs/2402.08638) |
|
- |
|
- **Leaderboard:** https://codalab.lisn.upsaclay.fr/competitions/16799#results |
|
- **Point of Contact:** [Nedjma Ousidhoum](mailto:OusidhoumN@cardiff.ac.uk), [Shamsuddeen Hassan Muhammad](mailto:shamsuddeen2004@gmail.com) |
|
|
|
### Dataset Summary |
|
|
|
SemRel2024 is a collection of Semantic Textual Relatedness (STR) datasets for 14 languages, including African and Asian languages. The dataset is designed for the SemEval-2024 Task 1: Semantic Textual Relatedness for African and Asian Languages. The task aims to evaluate the ability of systems to measure the semantic relatedness between two text segments, such as sentences or phrases. |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
The SemRel2024 dataset can be used for the Semantic Textual Relatedness task, which involves predicting the degree of semantic relatedness between two text segments on a scale, typically from 0 (not related at all) to 5 (highly related). |
|
|
|
[SemEval-2024 Task 1: Semantic Textual Relatedness for African and Asian Languages](https://github.com/semantic-textual-relatedness/Semantic_Relatedness_SemEval2024) |
|
|
|
### Languages |
|
|
|
The SemRel2024 dataset covers the following 14 languages: |
|
|
|
1. Afrikaans (_afr_) |
|
2. Algerian Arabic (_arq_) |
|
3. Amharic (_amh_) |
|
4. English (_eng_) |
|
5. Hausa (_hau_) |
|
6. Indonesian (_ind_) |
|
7. Hindi (_hin_) |
|
8. Kinyarwanda (_kin_) |
|
9. Marathi (_mar_) |
|
10. Modern Standard Arabic (_arb_) |
|
11. Moroccan Arabic (_ary_) |
|
12. Punjabi (_pan_) |
|
13. Spanish (_esp_) |
|
14. Telugu (_tel_) |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
Each instance in the dataset consists of two text segments and a relatedness score indicating the degree of semantic relatedness between them. |
|
|
|
{ |
|
"text1": "string", |
|
"text2": "string", |
|
"score": float |
|
} |
|
|
|
- text1: a string feature representing the first text segment. |
|
- text2: a string feature representing the second text segment. |
|
- score: a float value representing the semantic relatedness score between text1 and text2, typically ranging from 0 (not related at all) to 5 (highly related). |
|
|
|
|
|
## Citation Information |
|
|
|
If you use the SemRel2024 dataset in your research, please cite the following papers: |
|
|
|
``` |
|
@misc{ousidhoum2024semrel2024, |
|
title={SemRel2024: A Collection of Semantic Textual Relatedness Datasets for 14 Languages}, |
|
author={Nedjma Ousidhoum and Shamsuddeen Hassan Muhammad and Mohamed Abdalla and Idris Abdulmumin and Ibrahim Said Ahmad and |
|
Sanchit Ahuja and Alham Fikri Aji and Vladimir Araujo and Abinew Ali Ayele and Pavan Baswani and Meriem Beloucif and |
|
Chris Biemann and Sofia Bourhim and Christine De Kock and Genet Shanko Dekebo and |
|
Oumaima Hourrane and Gopichand Kanumolu and Lokesh Madasu and Samuel Rutunda and Manish Shrivastava and |
|
Thamar Solorio and Nirmal Surange and Hailegnaw Getaneh Tilaye and Krishnapriya Vishnubhotla and Genta Winata and |
|
Seid Muhie Yimam and Saif M. Mohammad}, |
|
year={2024}, |
|
eprint={2402.08638}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
``` |
|
@inproceedings{ousidhoum-etal-2024-semeval, |
|
title = "{S}em{E}val-2024 Task 1: Semantic Textual Relatedness for African and Asian Languages", |
|
author = "Ousidhoum, Nedjma and Muhammad, Shamsuddeen Hassan and Abdalla, Mohamed and Abdulmumin, Idris and |
|
Ahmad,Ibrahim Said and Ahuja, Sanchit and Aji, Alham Fikri and Araujo, Vladimir and Beloucif, Meriem and |
|
De Kock, Christine and Hourrane, Oumaima and Shrivastava, Manish and Solorio, Thamar and Surange, Nirmal and |
|
Vishnubhotla, Krishnapriya and Yimam, Seid Muhie and Mohammad, Saif M.", |
|
booktitle = "Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)", |
|
year = "2024", |
|
publisher = "Association for Computational Linguistics" |
|
} |
|
|
|
``` |
|
|