Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
File size: 10,969 Bytes
23588d6
f04e8ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23588d6
0e901ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e163557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1e9ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ca8029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf26c82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2342327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e901ee
23588d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd9bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56b4304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a792bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
028aa0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140bb40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f82b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d59dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23588d6
0e901ee
 
 
 
 
 
e163557
 
 
 
 
 
 
 
b1e9ff6
 
 
 
 
 
6ca8029
 
 
 
 
 
 
 
cf26c82
 
 
 
 
 
 
 
2342327
 
 
 
 
 
 
 
23588d6
 
 
 
 
 
 
 
8dd9bcc
 
 
 
 
 
 
 
56b4304
 
 
 
 
 
a792bfc
 
 
 
 
 
028aa0a
 
 
 
 
 
 
 
140bb40
 
 
 
 
 
 
 
d9f82b9
 
 
 
 
 
5d59dff
 
 
 
 
 
 
 
f04e8ac
 
 
6868835
95c6d27
6868835
 
 
 
 
49a4d9e
 
 
6868835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95c6d27
6868835
 
 
 
 
 
 
 
 
 
 
 
 
49a4d9e
6868835
49a4d9e
6868835
 
 
 
 
 
 
 
 
 
 
95c6d27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
---
language:
- afr
- amh
- arb
- arq
- ary
- eng
- es
- hau
- hin
- ind
- kin
- mar
- pan
- tel
dataset_info:
- config_name: afr
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: test
    num_bytes: 65243
    num_examples: 375
  - name: dev
    num_bytes: 66249
    num_examples: 375
  download_size: 95864
  dataset_size: 131492
- config_name: amh
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: train
    num_bytes: 209475
    num_examples: 992
  - name: test
    num_bytes: 36637
    num_examples: 171
  - name: dev
    num_bytes: 19498
    num_examples: 95
  download_size: 153682
  dataset_size: 265610
- config_name: arb
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: test
    num_bytes: 110473
    num_examples: 595
  - name: dev
    num_bytes: 5846
    num_examples: 32
  download_size: 72348
  dataset_size: 116319
- config_name: arq
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: train
    num_bytes: 170025
    num_examples: 1261
  - name: test
    num_bytes: 79323
    num_examples: 583
  - name: dev
    num_bytes: 12181
    num_examples: 97
  download_size: 149472
  dataset_size: 261529
- config_name: ary
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: train
    num_bytes: 382561
    num_examples: 924
  - name: test
    num_bytes: 175568
    num_examples: 426
  - name: dev
    num_bytes: 27975
    num_examples: 71
  download_size: 274828
  dataset_size: 586104
- config_name: eng
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: train
    num_bytes: 844975
    num_examples: 5500
  - name: test
    num_bytes: 374647
    num_examples: 2600
  - name: dev
    num_bytes: 36697
    num_examples: 250
  download_size: 868674
  dataset_size: 1256319
- config_name: esp
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: train
    num_bytes: 316713
    num_examples: 1562
  - name: test
    num_bytes: 123222
    num_examples: 600
  - name: dev
    num_bytes: 28981
    num_examples: 140
  download_size: 323584
  dataset_size: 468916
- config_name: hau
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: train
    num_bytes: 403474
    num_examples: 1736
  - name: test
    num_bytes: 142238
    num_examples: 603
  - name: dev
    num_bytes: 49236
    num_examples: 212
  download_size: 328542
  dataset_size: 594948
- config_name: hin
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: test
    num_bytes: 377385
    num_examples: 968
  - name: dev
    num_bytes: 113047
    num_examples: 288
  download_size: 217493
  dataset_size: 490432
- config_name: ind
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: test
    num_bytes: 68185
    num_examples: 360
  - name: dev
    num_bytes: 26579
    num_examples: 144
  download_size: 68263
  dataset_size: 94764
- config_name: kin
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: train
    num_bytes: 234520
    num_examples: 778
  - name: test
    num_bytes: 67211
    num_examples: 222
  - name: dev
    num_bytes: 30758
    num_examples: 102
  download_size: 219256
  dataset_size: 332489
- config_name: mar
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: train
    num_bytes: 555224
    num_examples: 1155
  - name: test
    num_bytes: 139343
    num_examples: 298
  - name: dev
    num_bytes: 146496
    num_examples: 293
  download_size: 381039
  dataset_size: 841063
- config_name: pan
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: test
    num_bytes: 307401
    num_examples: 634
  - name: dev
    num_bytes: 117984
    num_examples: 242
  download_size: 166402
  dataset_size: 425385
- config_name: tel
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: train
    num_bytes: 561688
    num_examples: 1146
  - name: test
    num_bytes: 145249
    num_examples: 297
  - name: dev
    num_bytes: 64775
    num_examples: 130
  download_size: 347275
  dataset_size: 771712
configs:
- config_name: afr
  data_files:
  - split: test
    path: afr/test-*
  - split: dev
    path: afr/dev-*
- config_name: amh
  data_files:
  - split: train
    path: amh/train-*
  - split: test
    path: amh/test-*
  - split: dev
    path: amh/dev-*
- config_name: arb
  data_files:
  - split: test
    path: arb/test-*
  - split: dev
    path: arb/dev-*
- config_name: arq
  data_files:
  - split: train
    path: arq/train-*
  - split: test
    path: arq/test-*
  - split: dev
    path: arq/dev-*
- config_name: ary
  data_files:
  - split: train
    path: ary/train-*
  - split: test
    path: ary/test-*
  - split: dev
    path: ary/dev-*
- config_name: eng
  data_files:
  - split: train
    path: eng/train-*
  - split: test
    path: eng/test-*
  - split: dev
    path: eng/dev-*
- config_name: esp
  data_files:
  - split: train
    path: esp/train-*
  - split: test
    path: esp/test-*
  - split: dev
    path: esp/dev-*
- config_name: hau
  data_files:
  - split: train
    path: hau/train-*
  - split: test
    path: hau/test-*
  - split: dev
    path: hau/dev-*
- config_name: hin
  data_files:
  - split: test
    path: hin/test-*
  - split: dev
    path: hin/dev-*
- config_name: ind
  data_files:
  - split: test
    path: ind/test-*
  - split: dev
    path: ind/dev-*
- config_name: kin
  data_files:
  - split: train
    path: kin/train-*
  - split: test
    path: kin/test-*
  - split: dev
    path: kin/dev-*
- config_name: mar
  data_files:
  - split: train
    path: mar/train-*
  - split: test
    path: mar/test-*
  - split: dev
    path: mar/dev-*
- config_name: pan
  data_files:
  - split: test
    path: pan/test-*
  - split: dev
    path: pan/dev-*
- config_name: tel
  data_files:
  - split: train
    path: tel/train-*
  - split: test
    path: tel/test-*
  - split: dev
    path: tel/dev-*
task_categories:
- text-classification
- sentence-similarity
---

## Dataset Description

- **Homepage:** https://github.com/semantic-textual-relatedness/Semantic_Relatedness_SemEval2024
- **Repository:** [GitHub](https://github.com/semantic-textual-relatedness/Semantic_Relatedness_SemEval2024)
- **Paper:** [SemRel2024: A Collection of Semantic Textual Relatedness Datasets for 14 Languages](https://arxiv.org/abs/2402.08638)
- 
- **Leaderboard:** https://codalab.lisn.upsaclay.fr/competitions/16799#results
- **Point of Contact:** [Nedjma Ousidhoum](mailto:OusidhoumN@cardiff.ac.uk), [Shamsuddeen Hassan Muhammad](mailto:shamsuddeen2004@gmail.com)

### Dataset Summary

SemRel2024 is a collection of Semantic Textual Relatedness (STR) datasets for 14 languages, including African and Asian languages. The dataset is designed for the SemEval-2024 Task 1: Semantic Textual Relatedness for African and Asian Languages. The task aims to evaluate the ability of systems to measure the semantic relatedness between two text segments, such as sentences or phrases.

### Supported Tasks and Leaderboards

The SemRel2024 dataset can be used for the Semantic Textual Relatedness task, which involves predicting the degree of semantic relatedness between two text segments on a scale, typically from 0 (not related at all) to 5 (highly related).

[SemEval-2024 Task 1: Semantic Textual Relatedness for African and Asian Languages](https://github.com/semantic-textual-relatedness/Semantic_Relatedness_SemEval2024)

### Languages

The SemRel2024 dataset covers the following 14 languages:

1. Afrikaans (_afr_)
2. Algerian Arabic (_arq_)
3. Amharic (_amh_)
4. English (_eng_)
5. Hausa (_hau_)
6. Indonesian (_ind_)
7. Hindi (_hin_)
8. Kinyarwanda (_kin_)
9. Marathi (_mar_)
10. Modern Standard Arabic (_arb_)
11. Moroccan Arabic (_ary_)
12. Punjabi (_pan_)
13. Spanish (_esp_)
14. Telugu (_tel_)

## Dataset Structure

### Data Instances

Each instance in the dataset consists of two text segments and a relatedness score indicating the degree of semantic relatedness between them.

{
  "text1": "string",
  "text2": "string",
  "score": float
}

- text1: a string feature representing the first text segment.
- text2: a string feature representing the second text segment.
- score: a float value representing the semantic relatedness score between text1 and text2, typically ranging from 0 (not related at all) to 5 (highly related).


## Citation Information

If you use the SemRel2024 dataset in your research, please cite the following papers:

```
@misc{ousidhoum2024semrel2024,
title={SemRel2024: A Collection of Semantic Textual Relatedness Datasets for 14 Languages}, 
author={Nedjma Ousidhoum and Shamsuddeen Hassan Muhammad and Mohamed Abdalla and Idris Abdulmumin and Ibrahim Said Ahmad and
Sanchit Ahuja and Alham Fikri Aji and Vladimir Araujo and Abinew Ali Ayele and Pavan Baswani and Meriem Beloucif and
Chris Biemann and Sofia Bourhim and Christine De Kock and Genet Shanko Dekebo and
Oumaima Hourrane and Gopichand Kanumolu and Lokesh Madasu and Samuel Rutunda and Manish Shrivastava and
Thamar Solorio and Nirmal Surange and Hailegnaw Getaneh Tilaye and Krishnapriya Vishnubhotla and Genta Winata and
Seid Muhie Yimam and Saif M. Mohammad},
      year={2024},
      eprint={2402.08638},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```
@inproceedings{ousidhoum-etal-2024-semeval, 
title = "{S}em{E}val-2024 Task 1: Semantic Textual Relatedness for African and Asian Languages",
author = "Ousidhoum, Nedjma and Muhammad, Shamsuddeen Hassan and Abdalla, Mohamed and Abdulmumin, Idris and
Ahmad,Ibrahim Said and Ahuja, Sanchit and Aji, Alham Fikri and Araujo, Vladimir and     Beloucif, Meriem and
De Kock, Christine and Hourrane, Oumaima and Shrivastava, Manish and Solorio, Thamar and Surange, Nirmal and
Vishnubhotla, Krishnapriya and Yimam, Seid Muhie and Mohammad, Saif M.",
booktitle = "Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)",
year = "2024",
publisher = "Association for Computational Linguistics"
}

```