File size: 7,013 Bytes
be4dac5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f5355d
be4dac5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This is humorous headline dataset called Humicroedit introduced in the Task-7 of SemEval 2020."""


import csv
import os

import datasets


_CITATION = """\
@article{hossain2019president,
  title={" President Vows to Cut< Taxes> Hair": Dataset and Analysis of Creative Text Editing for Humorous Headlines},
  author={Hossain, Nabil and Krumm, John and Gamon, Michael},
  journal={arXiv preprint arXiv:1906.00274},
  year={2019}
}
"""

_DESCRIPTION = """\
This new dataset is designed to assess the funniness of edited news headlines.
"""

_HOMEPAGE = "https://www.cs.rochester.edu/u/nhossain/humicroedit.html"
_LICENSE = ""

_URL = "https://cs.rochester.edu/u/nhossain/semeval-2020-task-7-dataset.zip"


class Humicroedit(datasets.GeneratorBasedBuilder):
    """This is humorous headline dataset called Humicroedit introduced in the Task-7 of SemEval 2020."""

    VERSION = datasets.Version("1.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="subtask-1", description="This part of the dataset covers the data for subtask-1"),
        datasets.BuilderConfig(name="subtask-2", description="This part of the dataset covers the data for subtask-2"),
    ]

    def _info(self):
        if self.config.name == "subtask-1":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "original": datasets.Value("string"),
                    "edit": datasets.Value("string"),
                    "grades": datasets.Value("string"),
                    "meanGrade": datasets.Value("float"),
                    # These are the features of your dataset like images, labels ...
                }
            )
        else:
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "original1": datasets.Value("string"),
                    "edit1": datasets.Value("string"),
                    "grades1": datasets.Value("string"),
                    "meanGrade1": datasets.Value("float"),
                    "original2": datasets.Value("string"),
                    "edit2": datasets.Value("string"),
                    "grades2": datasets.Value("string"),
                    "meanGrade2": datasets.Value("float"),
                    "label": datasets.ClassLabel(names=["equal", "sentence1", "sentence2"]),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_URL)
        ROOT = "semeval-2020-task-7-dataset"

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, ROOT, self.config.name, "train.csv"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": os.path.join(data_dir, ROOT, self.config.name, "test.csv"), "split": "test"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, ROOT, self.config.name, "dev.csv"),
                    "split": "dev",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split("funlines"),
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, ROOT, self.config.name, "train_funlines.csv"),
                    "split": "funlines",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples."""
        label_names = ["equal", "sentence1", "sentence2"]

        with open(filepath, encoding="utf-8") as csv_file:
            csv_reader = csv.reader(
                csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
            )
            next(csv_reader)

            for id_, row in enumerate(csv_reader):
                if self.config.name == "subtask-1":
                    row_id, original, edit, grades, meanGrade = row
                    yield id_, {
                        "id": row_id,
                        "original": original,
                        "edit": edit,
                        "grades": grades,
                        "meanGrade": meanGrade,
                    }
                else:
                    row_id, original1, edit1, grades1, meanGrade1, original2, edit2, grades2, meanGrade2, label = row
                    yield id_, {
                        "id": row_id,
                        "original1": original1,
                        "edit1": edit1,
                        "grades1": grades1,
                        "meanGrade1": meanGrade1,
                        "original2": original2,
                        "edit2": edit2,
                        "grades2": grades2,
                        "meanGrade2": meanGrade2,
                        "label": label_names[int(label)],
                    }