Datasets:
File size: 7,013 Bytes
be4dac5 3f5355d be4dac5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This is humorous headline dataset called Humicroedit introduced in the Task-7 of SemEval 2020."""
import csv
import os
import datasets
_CITATION = """\
@article{hossain2019president,
title={" President Vows to Cut< Taxes> Hair": Dataset and Analysis of Creative Text Editing for Humorous Headlines},
author={Hossain, Nabil and Krumm, John and Gamon, Michael},
journal={arXiv preprint arXiv:1906.00274},
year={2019}
}
"""
_DESCRIPTION = """\
This new dataset is designed to assess the funniness of edited news headlines.
"""
_HOMEPAGE = "https://www.cs.rochester.edu/u/nhossain/humicroedit.html"
_LICENSE = ""
_URL = "https://cs.rochester.edu/u/nhossain/semeval-2020-task-7-dataset.zip"
class Humicroedit(datasets.GeneratorBasedBuilder):
"""This is humorous headline dataset called Humicroedit introduced in the Task-7 of SemEval 2020."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="subtask-1", description="This part of the dataset covers the data for subtask-1"),
datasets.BuilderConfig(name="subtask-2", description="This part of the dataset covers the data for subtask-2"),
]
def _info(self):
if self.config.name == "subtask-1":
features = datasets.Features(
{
"id": datasets.Value("string"),
"original": datasets.Value("string"),
"edit": datasets.Value("string"),
"grades": datasets.Value("string"),
"meanGrade": datasets.Value("float"),
# These are the features of your dataset like images, labels ...
}
)
else:
features = datasets.Features(
{
"id": datasets.Value("string"),
"original1": datasets.Value("string"),
"edit1": datasets.Value("string"),
"grades1": datasets.Value("string"),
"meanGrade1": datasets.Value("float"),
"original2": datasets.Value("string"),
"edit2": datasets.Value("string"),
"grades2": datasets.Value("string"),
"meanGrade2": datasets.Value("float"),
"label": datasets.ClassLabel(names=["equal", "sentence1", "sentence2"]),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URL)
ROOT = "semeval-2020-task-7-dataset"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, ROOT, self.config.name, "train.csv"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, ROOT, self.config.name, "test.csv"), "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, ROOT, self.config.name, "dev.csv"),
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split("funlines"),
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, ROOT, self.config.name, "train_funlines.csv"),
"split": "funlines",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
label_names = ["equal", "sentence1", "sentence2"]
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
)
next(csv_reader)
for id_, row in enumerate(csv_reader):
if self.config.name == "subtask-1":
row_id, original, edit, grades, meanGrade = row
yield id_, {
"id": row_id,
"original": original,
"edit": edit,
"grades": grades,
"meanGrade": meanGrade,
}
else:
row_id, original1, edit1, grades1, meanGrade1, original2, edit2, grades2, meanGrade2, label = row
yield id_, {
"id": row_id,
"original1": original1,
"edit1": edit1,
"grades1": grades1,
"meanGrade1": meanGrade1,
"original2": original2,
"edit2": edit2,
"grades2": grades2,
"meanGrade2": meanGrade2,
"label": label_names[int(label)],
}
|