Datasets:
File size: 1,234 Bytes
c51857f 05fae9e c51857f 05fae9e 7bb4b29 05fae9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: unknown
task_categories:
- graph-ml
tags:
- chemistry
configs:
- config_name: transductive
data_files:
- split: train
path: "processed/transductive/train_df.csv"
- split: valid
path: "processed/transductive/val_df.csv"
- split: test
path: "processed/transductive/test_df.csv"
- config_name: inductive
data_files:
- split: train
path: "processed/inductive/train_df.csv"
- split: valid
path: "processed/inductive/val_df.csv"
- split: test
path: "processed/inductive/test_df.csv"
- config_name: raw
data_files: "raw/*.txt"
---
Source Paper: https://arxiv.org/abs/1802.06916
### Usage
```
from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset
dataset = CornellTemporalHyperGraphDataset(root = "./", name="NDC-substances-25", split="train")
```
### Citation
```misc
@article{Benson-2018-simplicial,
author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon},
title = {Simplicial closure and higher-order link prediction},
year = {2018},
doi = {10.1073/pnas.1800683115},
publisher = {National Academy of Sciences},
issn = {0027-8424},
journal = {Proceedings of the National Academy of Sciences}
}
``` |