Datasets:
ArXiv:
License:
File size: 4,911 Bytes
f5be51c 2f8cf0a f5be51c eedd49f f5be51c f55ad13 0b19223 bdeb758 f5be51c 2f8cf0a f5be51c f55ad13 2f8cf0a f55ad13 5146d34 f55ad13 7aa0147 2f8cf0a 7aa0147 f55ad13 dbeb20a f5be51c 7aa0147 f5be51c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""covid_qa_cleaned_CS: Connor Heaton/Saptarshi Sengupta"""
from datasets.tasks import QuestionAnsweringExtractive
import datasets
import requests
import json
import os
logger = datasets.logging.get_logger(__name__)
# You can copy an official description
_DESCRIPTION = """\
Cleaned version of COVID-QA containing fixes as mentioned in <paper yet to be published>.
"""
_LICENSE = "Apache License 2.0"
_URL = "https://github.com/saptarshi059/CDQA-v2-Auxilliary-Loss/blob/main/data/covid_qa_cleaned_CS/"
_URLs = {"covid_qa_cleaned_CS": _URL + "covid_qa_cleaned_CS.json"}
class CovidQADeepsetCleaned(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="covid_qa_cleaned_CS", version=VERSION, description="Cleaned version of COVID-QA (deepset) by Connor Heaton & Saptarshi Sengupta"),
]
def _info(self):
features = datasets.Features(
{
"document_id": datasets.Value("int32"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"is_impossible": datasets.Value("bool"),
"id": datasets.Value("int32"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
license=_LICENSE,
task_templates=[
QuestionAnsweringExtractive(
question_column="question", context_column="context", answers_column="answers"
)
],
)
def _split_generators(self, dl_manager):
#This code will be removed once the directory becomes public
url = 'https://raw.githubusercontent.com/saptarshi059/CDQA-v2-Auxilliary-Loss/main/data/covid_qa_cleaned_CS/covid_qa_cleaned_CS.json'
auth = ('saptarshi059', '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')
r = requests.get(url, auth=auth)
os.mkdir('my_temp')
with open('my_temp/covid_qa_cleaned_CS.json', 'w') as f:
json.dump(r.json(), f)
#url = _URLs[self.config.name]
#downloaded_filepath = dl_manager.download_and_extract(r)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": 'my_temp/covid_qa_cleaned_CS.json'},
),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
covid_qa = json.load(f)
for article in covid_qa["data"]:
for paragraph in article["paragraphs"]:
context = paragraph["context"].strip()
document_id = paragraph["document_id"]
for qa in paragraph["qas"]:
question = qa["question"].strip()
is_impossible = qa["is_impossible"]
id_ = qa["id"]
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
answers = [answer["text"].strip() for answer in qa["answers"]]
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
yield id_, {
"document_id": document_id,
"context": context,
"question": question,
"is_impossible": is_impossible,
"id": id_,
"answers": {
"answer_start": answer_starts,
"text": answers,
},
}
|