File size: 4,911 Bytes
f5be51c
 
 
 
 
 
 
 
 
 
 
 
 
 
2f8cf0a
f5be51c
 
eedd49f
 
 
f5be51c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f55ad13
0b19223
bdeb758
 
f5be51c
 
 
 
2f8cf0a
f5be51c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f55ad13
2f8cf0a
 
f55ad13
5146d34
f55ad13
 
 
7aa0147
2f8cf0a
7aa0147
 
 
 
f55ad13
 
dbeb20a
f5be51c
 
 
7aa0147
f5be51c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""covid_qa_cleaned_CS: Connor Heaton/Saptarshi Sengupta"""


from datasets.tasks import QuestionAnsweringExtractive
import datasets
import requests
import json
import os

logger = datasets.logging.get_logger(__name__)


# You can copy an official description
_DESCRIPTION = """\
Cleaned version of COVID-QA containing fixes as mentioned in <paper yet to be published>.
"""


_LICENSE = "Apache License 2.0"


_URL = "https://github.com/saptarshi059/CDQA-v2-Auxilliary-Loss/blob/main/data/covid_qa_cleaned_CS/"
_URLs = {"covid_qa_cleaned_CS": _URL + "covid_qa_cleaned_CS.json"}


class CovidQADeepsetCleaned(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="covid_qa_cleaned_CS", version=VERSION, description="Cleaned version of COVID-QA (deepset) by Connor Heaton & Saptarshi Sengupta"),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "document_id": datasets.Value("int32"),
                "context": datasets.Value("string"),
                "question": datasets.Value("string"),
                "is_impossible": datasets.Value("bool"),
                "id": datasets.Value("int32"),
                "answers": datasets.features.Sequence(
                    {
                        "text": datasets.Value("string"),
                        "answer_start": datasets.Value("int32"),
                    }
                ),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            license=_LICENSE,
            task_templates=[
                QuestionAnsweringExtractive(
                    question_column="question", context_column="context", answers_column="answers"
                )
            ],
        )

    def _split_generators(self, dl_manager):
        
        #This code will be removed once the directory becomes public

        url = 'https://raw.githubusercontent.com/saptarshi059/CDQA-v2-Auxilliary-Loss/main/data/covid_qa_cleaned_CS/covid_qa_cleaned_CS.json'
        auth = ('saptarshi059', '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')

        r = requests.get(url, auth=auth)

        os.mkdir('my_temp')
        
        with open('my_temp/covid_qa_cleaned_CS.json', 'w') as f:
            json.dump(r.json(), f)


        #url = _URLs[self.config.name]
        #downloaded_filepath = dl_manager.download_and_extract(r)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": 'my_temp/covid_qa_cleaned_CS.json'},
            ),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            covid_qa = json.load(f)
            for article in covid_qa["data"]:
                for paragraph in article["paragraphs"]:
                    context = paragraph["context"].strip()
                    document_id = paragraph["document_id"]
                    for qa in paragraph["qas"]:
                        question = qa["question"].strip()
                        is_impossible = qa["is_impossible"]
                        id_ = qa["id"]

                        answer_starts = [answer["answer_start"] for answer in qa["answers"]]
                        answers = [answer["text"].strip() for answer in qa["answers"]]

                        # Features currently used are "context", "question", and "answers".
                        # Others are extracted here for the ease of future expansions.
                        yield id_, {
                            "document_id": document_id,
                            "context": context,
                            "question": question,
                            "is_impossible": is_impossible,
                            "id": id_,
                            "answers": {
                                "answer_start": answer_starts,
                                "text": answers,
                            },
                        }